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Abstract: This paper reports on the research of factors that impact the accuracy and efficiency
of an unmanned aerial vehicle (UAV) based radio frequency (RF) and microwave data collection
system. The swarming UAVs (agents) can be utilized to create micro-UAV swarm-based (MUSB)
aperiodic antenna arrays that reduce angle ambiguity and improve convergence in sub-space
direction-of-arrival (DOA) techniques. A mathematical data model is addressed in this paper to
demonstrate fundamental properties of MUSB antenna arrays and study the performance of the data
collection system framework. The Cramer–Rao bound (CRB) associated with two-dimensional (2D)
DOAs of sources in the presence of sensor gain and phase coefficient is derived. The single-source case
is studied in detail. The vector-space of emitters is exploited and the iterative-MUSIC (multiple signal
classification) algorithm is created to estimate 2D DOAs of emitters. Numerical examples and practical
measurements are provided to demonstrate the feasibility of the proposed MUSB data collection
system framework using iterative-MUSIC algorithm and benchmark theoretical expectations.

Keywords: direction-of-arrival estimation; unmanned aerial vehicles; UAV swarm; aperiodic arrays;
MUSIC; Cramer–Rao bound

1. Introduction

DOA estimation of source using array sensors plays an important role in the field of array
signal processing. DOA estimation includes one-dimensional (1D) DOA estimation (azimuth) and
2D DOA estimation (azimuth and elevation). The accuracy of DOA estimation is mainly impacted
by the algorithm, the geometry of sensor array structure, signal-to-noise (SNR), and snapshots, etc.
Algorithms and array geometry are two essential research topics.

The DOA estimation method has been studied for decades and it is still an active research topic in
recent years. Initially, DOA estimation based on sensor array structures used the Bartlett beamforming
method, but it cannot offer high-resolution due to the Rayleigh limit [1,2]. Then, Burg came up with
the maximum entropy (ME) method, which is a high-resolution method, but it has a low robustness
and a considerable computation [3]. Later, a series of high-resolution spatial spectrum estimation
methods based on decomposition of matrix eigenvectors for array signal processing came out and
created a new era. All those spatial spectrum estimation methods were represented by MUSIC and
estimation signal parameters via rotational invariance technique (ESPRIT) [4–7]. These two methods
have greater resolution and accuracy than other classical methods. The simulations in [8] indicate
that MUSIC algorithm is more accurate and stable than ESPRIT algorithm for uniform linear array
(ULA). Furthermore, ESPRIT can only be used for invariant geometry, while MUSIC can be applied
for arbitrary non-uniform sensor arrays and multiple-source estimation. The MUSIC algorithm
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attracted more and more attention since it came out, which was the milestone of spatial spectrum
estimation methods. In certain conditions, MUSIC algorithm is 1D implementation of maximum
likelihood (ML) method, which shares the same characteristic with ML [9,10]. Then, due to the
relatively high calculation complexity of MUSIC, some search-free algorithms, such as root-MUSIC,
manifold separation based on root-MUSIC, use the root-solving technique to reduce the computational
complexity [11,12]. Nevertheless, it can only be used for ULA. In order to deal with arbitrary
non-uniform arrays, the Fourier domain root-MUSIC (FD root-MUSIC) algorithm was addressed [13],
but the FD root-MUSIC algorithm is mainly used for 1D DOA estimation.

Most of algorithms above are still in simulation and theoretical stages. Recently, practical
implementation of the DOA estimation system using field programmable gate array (FPGA) and digital
signal processing (DSP) are reported [14–16], those implementations achieve real-time application of
DOA estimation based on the MUSIC algorithm. Different from other well-known subspace-based
techniques like ESPRIT, MUSIC algorithm has many advantages in the real implementation owing to
its simplicity and suitability for parallel processing [16].

Apart from DOA estimation methods, the geometry of the antenna array is also very important.
Most of the investigations on the array structure are limited in either 1D linear array or 2D planar array
configurations [17]. The 1D array can only detect 1D DOA, and 2D array structures such as uniform
rectangular array (URA) and uniform circular array (UCA) can well estimate azimuth angles but cannot
well estimate elevation angles due to its small antenna aperture in the elevation direction. In order
to improve the elevation angle estimation accuracy, one may develop a three-dimension (3D) array
structure by putting more elements in the vertical direction to make a large elevation aperture [18,19].
However, it requires additional hardware and computational cost. Furthermore, the uniform linear
and planar array will cause the ambiguity problem (angle aliasing) due to the symmetry of array
structures [20–22]. Xia et al. proposed that cubic arrays still have ambiguity problem and the spherical
array can significantly reduce this problem [22]. Recently, 3D antenna array configurations have
attracted much more research interest in array signal processing [22–28]. Most of those 3D arrays
above are constructed from regular structure (i.e., cubic, cylinder), extending the planar array (i.e.,
URA, UCA) or configuring the virtual 3D array based on the planar array. Even though those special
3D arrays increase the elevation angle estimation accuracy, their array apertures are still relatively
small since the physical size of static arrays are restricted. Moreover, conventional investigations in
the DOA estimation require that the number of sensors is more than the number of receiving signals,
which increase hardware cost and system complexity.

In contrast, in order to investigate the compromise between hardware cost and signal processing
time, time-variant arrays whose element positions are changed over time are examined by time-divided
sampling rather than simultaneously sampling as static array. Many researchers have reported using
time-variant arrays to improve DOA estimation performance [29–35]. Instead of using a set of different
elements to process the incident signals, the time-variant array can only use one or a small number of
moving elements to construct virtual antenna arrays. Wan et al. proposed a method of combining the
characteristics of arbitrary virtual baseline to construct virtual 3D array [29]. However, the number
of sub-array elements is too small so that it cannot have high resolution. Liu examined a rotating
long baseline interferometer whose length is much larger than one wavelength to estimate 2D DOAs
by constructing virtual 2D circular arrays [30]. However, the 2D circular array has limited elevation
aperture and still cannot well estimate the elevation angle.

The MUSB aperiodic array reconstructed from swarming UAVs proposed herein has aperture
dimensions in both azimuth and elevation directions, which increase the accuracy of both azimuth
and elevation angle estimation. Corner and Lamont proposed a parallel simulation of UAV swarm
scenarios [36], and Saad et al. reported a testbed of vehicle swarm rapid prototyping [37]. Recently, many
researchers investigated the methods and impact factors of designing the robust MUSB antenna arrays
for signal collection platforms [38–41]. However, those works are limited in MUSB array constructing
investigations including UAV positional precision, turbulence of the environment, micro-UAV swarm
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algorithm, and swarm-based real-time data collection. In this paper, 2D DOA estimation using the
MUSB aperiodic array is provided, a mathematical model of the MUSB data collection system for signal
processing is offered firstly and the impact of associated parameters on DOA estimation accuracy and
convergence in this model are analyzed. The MUSB arrays have advantages of large aperture, large
interelement spacing, no shadowing effect, low mutual coupling effect and large spatial sampling data
from different locations in free space.

In practice, the MUSB system for DOA estimation requires low snapshots and might be applied in
low SNR scenarios. However, the subspace-based techniques require adequate SNR and snapshots to
guarantee good performance. We utilize the iterative method to lower the noise floor by multiplying the
current MUSIC spectrum and previous spectrum for each iteration. The details of the iterative-MUSIC
algorithm will be presented in Section 5.

This paper mainly contributes to the array signal processing area in three aspects.
First, the mathematical model of the MUSB aperiodic array data collection system is introduced
to demonstrate the fundamental DOA estimation impact factors and performance. Second, the CRB
associated with DOAs in the presence of the gain and phase coefficient in the system is derived to
reveal some direction-finding properties such as the global convergence, snapshots, SNR, and the
number of arrays. Third, a successive DOA refinement procedure with iterative-MUSIC algorithm is
provided based on the reconstructed arrays and spectrum to meet the requirement of high-precision
DOA estimation. The rest of this paper mainly consists of six sections. Section 2 introduces the MUSB
mathematical model; Section 3 derives the CRB associated with source DOAs in the presence of the
sensor gain and phase coefficient; Section 4 proposes performance analysis of the MUSB system for the
single-emitter case; Section 5 gives the algorithm applied in this paper; Section 6 provides simulation
and measurement results in different scenarios and Section 7 concludes the paper.

Glossary of notations is listed below: Ck×p = the space of k × p complex-valued matrices; E =

expectation operator; Ai j = the i, j element of a general matrix A ∈ Ck×p; AT = the transpose of A ∈ Ck×p;
AH = the conjugate transpose of A ∈ Ck×p; Re (A) = the real part of A ∈ Ck×p; Im (A) = the image
part of A ∈ Ck×p; tr (A) = the trace of A ∈ Ck×k; det (A) = the determinant of A ∈ Ck×k; A � B = the
Schur–Hadamard matrix product of A, B ∈ Ck×p, defined by [A� B]i j = Ai jBi j; A⊗ B = the Kronecker
matrix product of A, B ∈ Ck×p, defined by

A⊗ B =


a11B · · · a1 jB

...
. . .

...
ai1B · · · ai jB

 (1)

z ∼ cN(µ(α), ζ(α)) = the complex Gaussian distribution of the complex random vector z with mean µ
and variance ζ, and α is a real-valued parameter vector that completely and uniquely specifies the
distribution of z (see [42]).

2. Problem Formulation

2.1. Swarming UAV Synthetic Aperture

A swarming UAV synthetic aperture was presented in our early published paper [43]. Figure 1
shows a graphical representation of a UAV swarm as it morphs in time (iteration I in this paper). Each of
the M agents in the swarm has a location, orientation, and trajectory. Notionally, these have position
Pm,i(r,θ,φ), where m is the agent’s index and i is the iteration. During swarming, the agents undergo
rotations and translations, where a dual quaternion framework provides a convenient mechanism to
handle this behavior. This motion rotates the agents’ local (u, v, w) coordinate systems that describe the
spatial orientation of their antenna radiation pattern with respect to (w.r.t.) the global coordinate system
and the direction to the incoming signal of interest S(θn,φn), which is the nth source. The collection
of these measurements over iteration creates a synthetic aperture that can be used to calculate the
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parameters of interest (θn,φn). Notionally, K is independent data sampled for each agent in each
iteration and K is usually called a “snapshot”.

Figure 1. Morphing micro-UAV swarm-based (MUSB) antenna array configuration.

2.2. Signal Model

Friedlander and Weiss presented a mutual coupling model in the presence of sensor mutual
coupling, gain, and phase uncertainties [44]. We neglect the mutual coupling effect in the signal model
since the spacing of aperiodic array reconstructed from swarming UAVs is expected to be much larger
than a wavelength. Consider that an arbitrary array of M elements receive N uncorrelated incident
signals in the far-field demonstrated in part 1. Thus, the received signal for the i-th iteration can be
represented as

Xi(k) = Γi ·̃ i · Si(k) + Wi(k)k = 1, 2, · · · , K; i = 1, 2, · · · , I (2)

where Xi(k) = [X1,1(k), · · · , X1,M(k), · · · , Xi,1(k), · · · , Xi,M(k)]T, Si(k) =

[S1,1(k), · · · , S1,N(k), · · · , Si,1(k), · · · , Si,N(k)]
T, Wi(k) = [W1,1(k), · · · , W1,M(k), · · · , Wi,1(k), · · · , Wi,M(k)]T,

Γi = diag
{
g1,1e−jω0ψ1,1 , · · · , g1,Me−jω0ψ1,M , · · · , gi,1e−jω0ψi,1 , · · · , gi,Me−jω0ψi,M

}
, Ãi,mn = e−jω0τi,mn and

m = 1, 2, · · · , M; n = 1, 2, · · · , N; i = 1, 2, · · · , I. Then,

X(k) =
I∑

i=1

Xi(k) =
I∑

i=1

[Γi ·̃ i · Si(k) + Wi(k)] (3)

therefore, S(k) =
I∑

i=1
Si(k),W(k) =

I∑
i=1

Wi(k),Γ =
I∑

i=1
Γi , and Ã =

I∑
i=1

Ãi. Note that the sensor gain gi,m

and phase ψi,m change w.r.t. element location based on orientation of UAV; τi,mn changes w.r.t. location;
Si is constant; Wi may change w.r.t. location, velocity of UAV, and environment.

Since the sources we consider here are in the far field from the observing array. It is easy to find
that τi,mn can be represented by τi,mn = −di,mn/c, and then

di,mn = xi,m sinθn cosφn + yi,m sinθn sinφn + zi,m cosθn (4)

where di,mn is the distance from origin (reference sensor) of the coordinate to the m-th sensor in the
direction of the nth source for the i-th iteration, c is the propagating velocity in free space, (xi,m, yi,m, zi,m)

are the coordinates of the m-th sensor for the i-th iteration, (θn,φn) are the DOAs of the n-th source in
the sphere coordinate. From Equations (5), the matrix Ã can be obtained by

Ãi,mn = e j(ω0/c)(xi,m sinθn cosφn+yi,m sinθn sinφn+zi,m cosθn) = e j(2π/λ)(xi,m sinθn cosφn+yi,m sinθn sinφn+zi,m cosθn) (5)

where λ is wavelength.
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3. The CRB

3.1. Swarming UAV Synthetic Aperture

In theory, for a static array, the steering vector Ã is considered invariant over different snapshots
since the array geometry is invariant. Assume z ∼ cN(µ(α), ζ(α)), then, the m,n-th general formula of
the Fisher information matrix (FIM) on the covariance matrix of any unbiased estimate of α is:

Fmn = tr
[
ζ−1(α)

∂ζ(α)

∂αm
ζ−1(α)

∂ζ(α)

∂αn

]
+ 2Re

{
∂µ(α)

∂αm
ζ−1(α)

∂µ(α)

∂αn

}
(6)

where αm denotes the m-th component of α. The general formula has been presented in [45] and proved
in [46].

Petre and Nehorai presented the deterministic and stochastic CRB in [46]. For deterministic
CRB, the parameters, mean, and variance of the complex distribution are given by α ={
θ,

{
Re[s[t]], Im[s[t]]

}K
k=1, σ2

}
, µ(α) = [As[k]]Kk=1, ζ(α) = block− diag

(
σ2I

)
. Then, the m,n-th FIM is

Fmn = K
µ

σ4
∂σ2

∂αm

∂σ2

∂αn
+

2
σ2 ·

K∑
k=1

[
∂
∂αm

As[k]
]H[

∂
∂αn

As[k]
]

(7)

For stochastic CRB, the parameters, mean and variance of the complex distribution are given by
α =

{
θ, {Re{Pmn}, Im{Pmn}}

K
m,n=1, σ2

}
,µ(α) = 0,ζ(α) = block− diag(R). Then, the m,n-th FIM is

Fmn = K tr
[
R−1(α)

∂R(α)
∂αm

R−1(α)
∂R(α)
∂αn

]
(8)

Since the signals estimated cannot be known completely and the signals in the practical are
stochastic, this paper considers the stochastic CRB.

3.2. CRB for the UAV Swarming System

Before deriving the CRB, we assume that both incident signals and noise are stationary and
the ergodic complex Gaussian random process with zero mean and nonsingular covariance matrix
is uncorrelated with each other. The columns of A = ΓÃ are linearly independent. An additional
assumption is that the number of array elements reconstructed from swarming UAVs is greater than
the number of sources. Therefore, the matrix of the steering vector has a full column rank.

The covariance matrices of signal, noise and observation vectors for i-th iteration are given by

Pi = E
[
SiSH

i

]
, σ2

i I0 = E
[
WiWH

i ,
]

Ri = E
[
Xi(k)Xi

H(k)
]
= ΓiÃiPiÃH

i ΓH
i + σi

2I0 = AiPiAH
i + σi

2I0
(9)

where Ãi is the steering vector for the i-th iteration and Ai , ΓiÃi. It is useful to observe that if we

let the sample data covariance matrix R̂i =
1
K

K∑
k=1

Xi(k)Xi
H(k), and R̂ = 1

I

I∑
i=1

R̂i, then lim
K→∞

R̂i = Ri,

and lim
I→∞

R̂ = R.

The log-likelihood function of K independent samples in i-th iteration of a zero-mean complex
Gaussian random process Xi(k) whose statistics depend on a parameter vector α is given by

Li(α) = −K ln[det[Riπ]] −
K∑

k=1
xi

H(k)Ri
−1xi(k)

= Z−K ln[det[Ri]] −
K∑

k=1
xi

H(k)Ri
−1xi(k)

(10)
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where Z denotes the constant term of the log-likelihood function, det(R) represents the determinant of
the matrix R, and Ri is the time-varying covariance matrix w.r.t. the iteration. Thus, the log-likelihood
function of X(k) is:

L(α) = −K
I∑

i=1
ln[det(Riπ)] −

I∑
i=1

K∑
k=1

xi
H(k)Ri

−1xi(k)

=
I∑

i=1

{
Z−K ln[det(Ri)] −

K∑
k=1

xi
H(k)Ri

−1xi(k)
}

=
I∑

i=1
Li(α)

(11)

Therefore, the m,n-th elements of FIM are given by

Fmn = −E
[
∂2L(α)
∂αm∂αn

]
= −

I∑
i=1

E
[
∂2Li(α)
∂αm∂αn

]
=

I∑
i=1

{
K tr

[
Ri
−1(α)

∂Ri(α)
∂αm

Ri
−1(α)

∂Ri(α)
∂αn

]}
=

I∑
i=1

Fi,mn (12)

It follows that the FIM’s submatrix Fmn for the UAV swarming data collecting system can be obtained by
summing the single-iteration Fi,mn of FIM over the iterations. Furthermore, the FIM’s submatrix Fi,mn
can be obtained by multiplying the single-snapshot Fi,mn and the number of snapshots. Thus, we only
need to know the single-snapshot Fi,mn for the i-th iteration. The problem of the major interest is the
estimation of the incident angles of the sources. Expression of CRB for 1D DOA of each iteration for
the present problem is listed in [47]. The CRB of 2D DOA estimation with arbitrary array for the i-th
iteration, which can be considered as an arbitrary static array, presented in this paper is given in the
Appendix A.

4. Analysis of Single-Emitter Case

In this section, we investigate more details of the MUSB data collecting system with single-emitter
case. The unknown parameters we consider here are the 2D DOAs (θ,φ). Assume the source variance
is P, the noise variance is σ2, the snapshot for each iteration is K, and the iteration is I. From the
Appendix A, we have the formula of FIM w.r.t. 2D DOAs in the i-th iteration of the MUSB system.

Fi,s,2 =

[
Fi,θθ Fi,θφ
Fi,φθ Fi,φφ

]
=

2K
σ2

{
Re

[
DH

i A⊥i Di � 121T
2 ⊗Ui

]}
(13)

The mth element of the steering vector for the i-th iteration is given by

ai,m(θ,φ) = γi,m · exp[ j
2π
λ
(xi,m sinθ cosφ+ yi,m sinθ sinφ+ zi,m cosθ)] (14)

where γi,m is the gain and phase parameter and can be represented as γi,m = gi,me− jω0ψi,m . Taking the
derivative of ai(θ,φ) w.r.t. θ and φ for the i-th iteration, we obtain

di,θ =
d

dθ
ai(θ,φ) = j

2π
λ

bi,m � ai(θ,φ), di,φ =
d

dφ
ai(θ,φ) = j

2π
λ

qi,m � ai(θ,φ) (15)

where bi,m = xi,m cosθ cosφ + yi,m cosθ sinφ− zi,m sinθ,qi,m = −xi,m sinθ sinφ+ yi,m sinθ cosφ. Note

AH
i Ai =

M∑
m=1

g2
i,m = Gi,M (16)

Therefore, it is straightforward to verify that

DH
i (θ)Di(θ) =

(
− j

2π
λ

biAH
i

)(
j
2π
λ

biAi

)
=

4π2

λ2

M∑
m=1

b2
i,mg2

i,m (17)
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DH
i (φ)Di(φ) =

(
− j

2π
λ

qiAH
i

)(
j
2π
λ

qiAi

)
=

4π2

λ2

M∑
m=1

q2
i,mg2

i,m (18)

DH
i (θ)Di(φ) =

(
− j

2π
λ

biAH
i

)(
j
2π
λ

qiAi

)
=

4π2

λ2

M∑
m=1

bi,mqi,mg2
i,m = DH

i (φ)Di(θ) (19)

Substituting Equations (14), (15), and (17), we can obtain

DH
i (θ)A

⊥

i Di(θ) = DH
i (θ)

(
I0 −Ai

(
AH

i Ai
)−1

Ai
H
)
Di(θ) = DH

i (θ)Di(θ) −
DH

i (θ)AiAH
i Di(θ)

Gi,M

= 4π2

λ2

M∑
m=1

b2
i,mg2

i,m −
4π2

λ2
1

Gi,M

(
M∑

m=1
bi,mg2

i,m

)2

= 4π2

λ2

{
M∑

m=1
b2

i,mg2
i,m −

1
Gi,M

(
M∑

m=1
bi,mg2

i,m

)2
 (20)

Using the same derivative procedure, we can obtain

DH
i (φ)A

⊥

i Di(φ) =
4π2

λ2

 M∑
m=1

q2
i,mg2

i,m −
1

Gi,M
·

M∑
m=1

qi,mg2
i,m


2 (21)

DH
i (θ)A

⊥

i Di(φ) =
4π2

λ

 M∑
m=1

bi,mqi,mg2
i,m −

1
Gi,M

·

M∑
m=1

bi,mg2
i,m

M∑
m=1

qi,mg2
i,m


 = DH

i (θ)A
⊥

i Di(φ) (22)

Furthermore,

Ui = PAH
i R−1

i AiP = P2AH
i

(
AH

i PAi + σ2I0
)−1

Ai = P2Gi,M
(
PGi,M + σ2

)−1
=

P2Gi,M

PGi,M + σ2 (23)

Therefore,

Fi,θθ =
8Kπ2

λ2σ2

P2G2
i,M

PGi,M + σ2

 1
Gi,M

M∑
m=1

b2
i,mg2

i,m −

 1
Gi,M

M∑
m=1

bi,mg2
i,m


2 (24)

Fi,φφ =
8Kπ2

λ2σ2

P2G2
i,M

PGi,M + σ2

 1
Gi,M

M∑
m=1

q2
i,mg2

i,m −

 1
Gi,M

M∑
m=1

qi,mg2
i,m


2 (25)

Fi,θφ =
8Kπ2

λ2σ2

P2G2
i,M

PGi,M + σ2

 1
Gi,M

M∑
m=1

bi,mqi,mg2
i,m −

 1
G2

i,M

M∑
m=1

bi,mg2
i,m

M∑
m=1

qi,mg2
i,m


 = Fi,φθ (26)

Assume

Bi =
1

Gi,M

M∑
m=1

b2
i,mg2

i,m −

 1
Gi,M

M∑
m=1

bi,mg2
i,m


2

, Qi =
1

Gi,M

M∑
m=1

q2
i,mg2

i,m −

 1
Gi,M

M∑
m=1

qi,mg2
i,m


2

(27)

Vi =
1

Gi,M

M∑
m=1

bi,mqi,mg2
i,m −

 1
G2

i,M

M∑
m=1

bi,mg2
i,m

M∑
m=1

qi,mg2
i,m

, Ci =
G2

i,MSNR2

Gi,MSNR + 1
(28)

where SNR = P/σ2. Thus, summing over iteration, we obtain the CRB

CRB =

[
Fθθ Fθφ
Fφθ Fφφ

]−1

(29)
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where Fθθ = 8Kπ2

λ2

I∑
i=1

CiBi, Fφφ = 8Kπ2

λ2

I∑
i=1

CiQi, Fθφ = 8Kπ2

λ2

I∑
i=1

CiVi = Fφθ. If we ignore the sensor

orientation (i.e., Γ = 1) and let K = 1, then AH
i Ai = M and the FIM w.r.t. 1-D DOA is given by

Fθ =
8π2

λ2
M2SNR2

MSNR + 1
B (30)

where B =
I∑

i=1
Bi and Bi =

1
M

M∑
m=1

b2
i,m −

(
1
M

M∑
m=1

bi,m

)2

, which coincides with the results in [47].

5. The Algorithm

5.1. UAV Parameters

Assume there are M swarming UAVs and each UAV swarms in a cylinder region (radius r, h = 2r).

Each UAV has an initial location (x, y, z) in the swarming region with a vector velocity
→

Vi,m in each
iteration and the initial locations of the M UAVs are considered as the first iteration. The swarming

short distance in each iteration is represented as a vector
→

di,m. The scalar quantity can be represented
as d, which uses the following relation:

d = βt · λ/ρ (31)

where βt is a uniformly distributed random number matrix between zero and one, λ is wavelength
and p is the coefficient determining the distribution mean of swarm distance. Figure 2 shows the
distribution of short distance with mean µ = 0.25 wavelength. Here, the range of d also depends on the
speed of UAV and data sampling interval and can be configured by the customer. We can obtain

Figure 2. Distribution of short distance that one unmanned aerial vehicle (UAV) swarms.

→

di,m =
→

Vi,m · t (32)

5.2. Data Processing and Algorithm

When UAV swarms, a significant amount of data/information may be sampled due to the number of
swarming UAVs and number of iterations. Herein, the location of each UAV is considered as one data point.
Thus, when M UAVs morph I times, we have M ∗ I data points which will be used to reconstruct virtual
(e.g., synthetic) 3D aperiodic arrays to calculate the MUSIC spectrum and estimate DOAs. The number of
data points (represented as Nd) is equivalent to the number of elements for a static array.

One challenge is how to choose Nd for computing the MUSIC spectrum at each signal processing
iteration (represented as p-iteration). We would like to use more Nd in each p-iteration since more
Nd used for MUSIC spectrum calculation each time means that more array elements are used for
data processing in a static antenna array, and are more accurate for DOA estimation. However, more



Sensors 2019, 19, 2659 9 of 19

data processing points cause higher calculation cost. Thus, it is necessary to compromise Nd at each
p-iteration and computational complexity.

Another problem is how to well choose data collecting and processing methods. Wide range of
methods can be deployed to collect, concatenate, and process data collected from time-dependent
measurements. MUSIC algorithm requires a minimum of three unique samples collected from these
time-dependent measurements to provide DOA estimation. The required data samples can be obtained
from agents in the swarm (e.g., one UAV locally collecting three samples at different times, or three
spatially distributed UAVs collecting one sample simultaneously). We need to consider spatiotemporal
distribution of samples (such as sampling rate w.r.t. wavelength, trajectory and velocity of UAVs,
orientation of sensors, etc.) and iterative processing of measurements (use all data collected, truncate
or applying a moving window, etc.). The iterative processing method with a moving window is called
the iterative-MUSIC used in this paper.

Figure 3 shows the data processing schematic for three data points in each iteration within the
MUSB system. The left part in Figure 3 shows a UAV swarm and sampling method, and the right part
shows the algorithm and data processing method. When UAV swarms to a certain location, we will
sample K times and each snapshot takes time dt. After taking K snapshots, the program sets up a
data point. When Nd = 3, the program computes the stand MUSIC spectrum using three data points
and stores the result. Then when UAV swarms again, we accumulate the current data point and two
previous data points to calculate the MUSIC spectrum. Then we multiply the current and previous
MUSIC spectrum at each p-iteration where we obtain the iterative-MUSIC spectrum to reduce noise
level and improve DOA estimation performance. Note that if the p-iteration is too big, the value of
spectral points will be very small and might be taken as zero. If so, DOA cannot be estimated and
we may use dB instead of a number at that situation. Then, we refine and estimate DOAs and use
predefined DOA estimation precision criteria to stop the process.

Figure 3. Data processing schematic for MUSB system.

5.3. MUSIC Algorithm for MUSB Array

As stated in part 2 of this section, the number of reconstructed MUSB arrays is Nd. Here, we rewrite
the covariance of signals listed in Part 2 of Section 3 and give the first p-iteration (slightly different
from UAV swarming iteration) of the iterative-MUSIC algorithm.

Rewriting the data model (1), we obtain

X(k) = Γ ·̃ · S(k) + W(k) = A · S(k) + W(k) k = 1, 2, · · · , K (33)

where
{
X{k} ∈ CNd×1

}
are the vectors of sampled data,

{
S{k} ∈ CN×1

}
are the source signals,

{
Γ ∈ CNd×Nd

}
are the gain and phase of sensors and

{
Ã ∈ CNd×N

}
are the regular steering vectors. Thus, the covariance

of X(k) is
R = E

[
X(k)XH(k)

]
= ΓÃPÃHΓH + σ2I0 = APAH + σ2I0 (34)

Define
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Rs = APAH (35)

Rs is Nd ×Nd matrix with rank N. Therefore, it has Nd −N repeated eigenvectors corresponding to the
minimum eigenvalues σ2. Let ei be such an eigenvector so that Rsei = 0 or AHei = 0, thus, Nd −N
eigenvectors ei corresponding to the minimal eigenvalues are orthogonal to each of N signal columns
of A = ΓÃ, proved in [5]. Nd − N dimensional subspace spanned by the noise eigenvectors is defined
as noise subspace and N dimensional subspace spanned by incident signal mode vectors is defined as
signal subspace.

Let Qn be Nd × (Nd −N) matrix of noise eigenvectors, then the MUSIC spatial spectrum function
is given by

PMU(θ,φ) =
1

ã(θ,φ)HΓHQnQnHΓã(θ,φ)
=

1∥∥∥QnHΓã(θ,φ)
∥∥∥2 =

1∥∥∥QnHa(θ,φ)
∥∥∥2 (36)

Then, the search spectrum peaks in the range of θ and φ, and the peak spectrum points we obtain
are the estimation of arrival angles of incident waves.

5.4. Convergence Check

The algorithm performs the calculation until the system converges. The convergence can be
guaranteed since the estimated DOA is a convergent series.

When the signal is covered by a high noise level, the estimated DOAs might be far from the
ground truth and cannot be judged for convergence. However, as the iteration increases, the noise
level is reduced and estimated DOAs are converged gradually. The Equation for judging convergence
is given by

DOAi+1 −DOAi ≤ ε, i = 1, 2, · · · , Im (37)

where Im is the number of p-iteration of the iterative-MUSIC algorithm and ε is the preset threshold.
The numerical simulation is given in part 1 of Section 6.

5.5. Computational Complexity Analysis

The orders of computational complexities of conventional spectral MUSIC [5], iterative-MUSIC,
and eigenstructure-based algorithm with array interpolation (denoted by array interpolation) [48]
are compared in Table 1. In this table, we assume the interpolated number of the array interpolation
technique is equal to the number of actual sensors (M1 = Nd ) and the total number of angular
sectors is denoted as IθIφ. Those methods in Table 1 include the eigendecomposition step represented

by the term O
(
N2

dN
)

and the computation of Jθ Jφ samples of the MUSIC null-spectrum function

represented by O
(
Jθ Jφ(Nd + 1)(Nd −N)

)
, where Jθ and Jφ stand for the search numbers along the

directions of θ and φ. J̃θ J̃φ stands for the total search numbers for each sector of array interpolation
algorithm. The iterative-MUSIC at each iteration may have very low snapshot (K = 1) different from
the traditional spectral MUSIC algorithm which requires high snapshots. The computation complexity
of the iterative-MUSIC algorithm is a little bit lower than the array interpolation at each iteration
(Jθ Jφ ≈ IθIφ J̃θ J̃φ >> Nd), but it is higher in the whole UAV swarming period. However, the array
interpolation algorithm will be very complex when applied for 3D random arrays.

Table 1. The orders of computational complexities of real-valued operations.

Algorithm Primary Computations

Spectral MUSIC O
(
N2

dN + Jθ Jφ(Nd + 1)(Nd −N)
)

Iterative-MUSIC O
(
N2

dN + Jθ Jφ(Nd + 1)(Nd −N)
)

for each iteration
Array Interpolation O

(
IθIφ

(
N2

dN + J̃θ J̃φ(Nd + 1)(Nd −N)
))
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6. Simulation and Measurement Results

In this section, several groups of simulations will be carried out to demonstrate the performance
of the presented distributed directional finding system in this paper. As the framework of the MUSB
system established in this paper is mentioned for the first time, we focus mainly on analyzing the
impact of various factors on the feasibility of the MUSB system. Practical measurements in the lab are
also given in part 3 to show the DOA estimation performance in practice.

The wavelength of signal is fixed at 1 meter (m) and the simulation in each scenario is repeated
500 times. The elevation angle of the source emitter is 85◦ and the azimuth angle is 270◦. As one
UAV swarms till Nd = 3, the iterative-MUSIC algorithm begins to search (0◦, 179◦) space for elevation
angle and (0◦, 359◦) space for azimuth angle with 1◦ interval to form the overcomplete MUSIC
spectrum for each p-iteration. Then, UAV keeps swarming and the iterative-MUSIC algorithm keeps
computing the MUSIC spectrum before the precision of DOA estimation is satisfied. When the
preset threshold is satisfied, UAV stops swarming and the reconstructed process of phased arrays is
terminated. The refined DOA estimations are obtained by scanning the reconstructed signal peaks
from the iterative-MUSIC algorithm with 0.1◦ step during the refinement procedure 10 times.

Moreover, the speed of UAV will influence the snapshot at each location where the system samples
the source emitter. The snapshot at each location should be very low if the UAV swarms very fast and
the snapshot can be high when the swarming rate of UAV is low. The speed of UAV in this paper will
be represented by the distance between two iterations of swarming UAVs shown in Figure 2.

The joint root-mean-square error (RMSE) of incident signals is used for statistical DOA estimation
precision evaluation, which is defined as

RMSEθ,φ =

√√√ W∑
w=1

N∑
n=1

[[
θ̂w

n − θ
w
n

]2
+

[
φ̂w

n −φ
w
n

]2
]

/2WN (38)

where W is the number of Monte Carlo simulations, (θw
n ,φw

n ) represent the actual DOAs of the nth
signal, and

(
θ̂w

n , φ̂w
n

)
represent the estimated DOAs of the nth signal in the w-th simulation.

First, the system convergence will be studied in a typical scenario. Second, the DOA estimation
performance using the iterative-MUSIC algorithm will be compared with CRB in various scenarios.
Finally, DOA estimation performance in practice will be investigated.

6.1. System Convergence

Figure 4 provides and example of the MUSB distributed directional finding system gradually
converging to the ground truth as iteration increases by using iterative-MUSIC algorithm.

Figure 4. Direction-of-arrival (DOA) estimation convergence for the MUSB system. (a) Nd = 3, SNR =

0 dB, K = 1. (b) Nd = 3, SNR = 0 dB, K = 16.
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6.2. DOA Estimation Performance

The performance of DOA estimation depends on multiple factors such as SNR, K, Nd, velocity of
UAV and number of iterations. Furthermore, the performance also depends on the distinctness of the
array geometries due to the diversity of different observations at different time instants. In this section,
we only consider the single-emitter case. When a single source is present, a typical scenario is set in
which UAV swarming short distance mean µ = 2λ, the Monte Carlo simulation number and angles of
the source are the same as before. Figure 5 depicts the results predicted by the stochastic CRB derived
in Section 4. The joint RMSE of elevation and azimuth angles obtained from the iterative-MUSIC
algorithm together with CRB from Section 4 are shown in Figures 6 and 7.

The extreme case is K = 1, Nd = 3 (2D DOA estimation requires a minimum of three unique
samples). The fixed settings and changed settings are listed as: Figure 5a varies snapshots K from 1 to
96 for different SNR with iteration i = 100, Nd = 3; Figure 5b varies SNR from −30 to 0 dB for different
UAV iterations with K = 1, Nd = 3; Figure 5c varies SNR from -30 to 0 dB for different data points Nd in
each iteration with K = 1, i = 100; Figure 5d varies SNR for different speed of UAV with K = 1, Nd = 3,
i = 100; Figure 6a varies SNR of one signal from -20 to 20 dB with K = 1, Nd = 3; Figure 6b varies K
from 1 to 99 with SNR = 0 dB, Nd = 3; Figure 6c varies speed of UAV with K = 1, Nd = 3, SNR = 0 dB;
Figure 6d varies incident elevation angles from 5◦ to 90◦ with SNR = 0 dB, Nd = 3, K = 1; Figure 7a
varies sensor gain deviation with SNR = 0 dB, Nd = 3, K = 1; Figure 7b varies sensor phase deviation
with SNR = 0 dB, Nd = 3, K = 1. Scenarios (a)–(d) in Figure 5 give the lower bounds of the MUSB
system. Scenarios (a)–(d) in Figure 6 show the performance of MUSB array without element rotation
(sensor gain g = 1 and sensor phase ψ = 0 and scenarios (a)–(b) in Figure 7 show the impact factors
with the element rotation of MUSB array (sensor gain and phase coefficients have certain deviations).

From Figures 6 and 7, we can find that Figure 6a shows the DOA estimation performance of the MUSB
system will increase with increasing SNR; Figure 6b shows that the system can estimate DOAs even when
snapshot K = 1; Figure 6c shows that when the UAV speed increases, the precision of DOA estimation
increases; Figure 6d shows that the precision of DOA estimation increases with increasing elevation angles.
Figure 7 shows the performance of the MUSB array with UAV rotating associated with sensor gain and
phase varying. Figure 7a shows that the DOA estimation is not significantly impacted as the standard
deviation of sensor gain increases; Figure 7b shows the precision of DOA estimation decreases significantly
when the standard deviation of the sensor phase increases to a certain value.

In Figure 7b, we find that the stochastic CRB is flat for the single-emitter case as the phase standard
phase varies because Equation 16 shown in Section 4 cancels the sensor phase errors by multiplying
the steering vector A and the conjugate transpose of A, while the iterative-MUSIC algorithm does not
have the advantages CRB has utilized. Equation 39 shows the advantages of CRB for the single-emitter
case and Equations 16–21 give the derivation process with advantages of sensor phase error cancel.

AH
i Ai =

[
gi,1 · e− jϕ1,1 , · · · , gi,m · e− jϕ1,m

]
gi,1 · e jϕ1,1

...
gi,m · e jϕ1,m

 =
M∑

m=1

g2
i,m (39)

where ϕi,m includes the sensor phase deviation and phase difference from sensor m to relative phase
center in the i-th iteration.
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Figure 5. DOA standard deviation predicted by the stochastic Cramer–Rao bound (CRB). (a) Varying
snapshots with different signal-to-noise ratio (SNR); (b) varying SNR with different iterations of UAV
swarming; (c) varying SNR with different array element number; (d) varying SNR with different
average speed.

Figure 6. DOA estimation root mean square error (RMSE) of iterative-MUSIC (multiple signal
classification) and CRB in different scenarios. (a) Varying SNR (Nd = 3); (b) varying K; (c) varying the
speed of UAV w.r.t. wavelength; (d) varying incident elevation angles.
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Figure 7. DOA estimation RMSE of iterative-MUSIC and CRB in different scenarios. (a) Varying sensor
gain standard deviation; (b) varying sensor phase standard deviation.

6.3. Measurement

In the experiment, the test fixture provides a convenient platform to study this morphing in time
(using sixteen elements). Randomly positioned rectangular patch antennas designed for 2.45 GHz
are used with a randomly morphing volume provided by a moving platform named as “Medusa” to
estimate DOAs. Figure 8 shows that one source in the far-field transmits and receiving sensors receive
the signal with the vector network analyzer (VNA) measuring the S21 of transmitting and receiving
antennas. Figure 9 shows the measured MUSIC spectrum with 16 spatially distributed elements as a
static volumetric random array in Medusa with element rotation (Rotate 0–45 degrees around x, y,
z axis randomly, no UAV swarming). Figure 10 shows the measured azimuth and elevation errors
gradually converge from around 10–20 degrees to around 1–2 degrees as the iteration increases with
UAV swarming. In Figure 10, we take the extreme case (Nd = 3, K = 1).

Figure 8. Test diagram. (a) Schematic diagram; (b) practical test diagram.
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Figure 9. Measured MUSIC spectrum with iteration i = 1, K = 1, Nd= 16, an incident signal of azimuth
356.3◦ and elevation 18◦. (a) 2D MUSIC spectrum; (b) 3D MUSIC spectrum.

Figure 10. Measured errors compared to iterations with Nd= 3, K = 1. (a) Element without rotation; (b)
element with rotation (element rotates 0–45 degrees around x, y, z axis randomly to simulate UAV flying).

7. Conclusions

This paper establishes a MUSB data collection framework for the first time, which makes it possible
to realize source estimation with low snapshot under low SNR environment in a UAV swarming period.
Theoretical and experiment results are given to reveal the performance of the MUSB phased array
system used for 2D DOA estimation, which supports the feasibility of the system. The iterative-MUSIC
algorithm is applied for the framework and it can estimate the DOAs efficiently only with one snapshot
in each iteration when UAV swarms very fast. The UAV speed controls the structure of the reconstructed
aperiodic phased arrays from the MUSB system and the DOA estimation precision is increased when
the distance between the two iterations of swarming UAV is increased. The impact of known sensor
gain errors and phase errors from the UAV rotation for the DOA estimation performance are also
investigated. Practical experiment results match the theoretical expectation of the MUSB system using
the iterative-MUSIC algorithm. Our results will benefit future research on performance analysis and
optimal design of time-varying antenna arrays based on the UAV swarm. It is also interesting to extend
the results when position errors are present in the future.
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designed the simulations; Z.C. wrote the paper.
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Appendix A

Referred to [49], the stochastic FIM’s Fθ w.r.t. 1D incident angle θ of static array is available:

Fθ = CRB−1 =
2K
σ2

{
Re[H �U]

}
(A1)

where H = DH
[
I0 −A

[
AHA

]−1
AH

]
D, D = [d1, d2, · · · dN], dn =

da(θ)
dθ

∣∣∣∣
θ=θn

, and U = PAHR−1AP.

For each iteration, the FIM’s Fi,θ for the presented problem in this paper is given by

Fi,θ = CRBi,θ
−1 =

2K
σ2

{
Re[Hi �Ui]

}
(A2)

where Hi = Di
H
[
I0 −Ai

[
Ai

HAi
]−1

Ai
H
]
Di, Di = [di,1, di,2, · · · di,N], di,n =

dai(θ)
dθ |θ=θn , Ui = PiAi

HRi
−1AiPi.

As already stated,

Fθ =
I∑

i=1

Fi,θ (A3)

Omitting to the parameters Re(Pmn), Im(Pmn), σ2, gain and phase of signals, only consider

the estimation of elevation and azimuth angles (θn,φn) hereby is given by α =
[
θT, φT

]T
, θ =

[θ1,θ2, · · ·θN]
T, and φ = [φ1,φ2, · · ·φN]

T. Thus, the submatrix of FIM associated with 2D DOA is

Fi,s,2 =

[
Fi,θθ Fi,θφ
Fi,φθ Fi,φφ

]
=

2K
σ2

{
Re

[
DH

i A⊥i Di � 121T
2 ⊗Ui

]}
(A4)

A⊥i = I0 −Ai
(
Ai

HAi
)−1

Ai
H (A5)

where “i, s, 2” denotes the 2D stochastic bounds for the i-th iteration,12 represents 2x1 vectors of ones
and

Fi,θθ = 2K
σ2

{
Re

[
DH

i [θ]A
⊥

i Di[θ] �Ui
]}

,
Fi,θφ = 2K

σ2

{
Re

[
DH

i [θ]A
⊥

i Di[φ] �Ui
]} (A6)

Fi,φθ = 2K
σ2

{
Re

[
DH

i [φ]A
⊥

i Di[θ] �Ui
]}

,
Fi,φφ = 2K

σ2

{
Re

[
DH

i [φ]A
⊥

i Di[φ] �Ui
]} (A7)

where Ai(θ,φ) = [ai[θ1,φ1], ai[θ2,φ2], · · · , ai[θN,φN]]. Thus, the system stochastic FIM is given by

Fs,2 =
I∑

i=1

Fi,s,2 =

[
Fθθ Fθφ
Fφθ Fφφ

]
(A8)

where Fθθ =
I∑

i=1
Fi,θθ, Fθφ =

I∑
i=1

Fi,θφ, Fφθ =
I∑

i=1
Fi,φθ, Fφφ =

I∑
i=1

Fi,φφ.
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