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Abstract: Markovian regulatory networks constitute a class of discrete state-space models used to study gene regulatory

dynamics and discover methods that beneficially alter those dynamics. Thereby, this class of models provides a

framework to discover effective drug targets and design potent therapeutic strategies. The salient translational goal is to

design therapeutic strategies that desirably modify network dynamics via external signals that vary the expressions of a

control gene. The objective of an intervention strategy is to reduce the likelihood of the pathological cellular function

related to a disease. The task of finding an effective intervention strategy can be formulated as a sequential decision

making problem for a pre-defined cost of intervention and a cost-per-stage function that discriminates the gene-activity

profiles. An effective intervention strategy prescribes the actions associated with an external signal that result in the

minimum expected cost. This strategy in turn can be used as a treatment that reduces the long-run likelihood of gene

expressions favorable to the disease. In this tutorial, we briefly summarize the first method proposed to design such

therapeutic interventions, and then move on to some of the recent refinements that have been proposed. Each of these

recent intervention methods is motivated by practical or analytical considerations. The presentation of the key ideas is

facilitated with the help of two case studies.

Received on: December 04, 2008 - Revised on: March 02, 2009 - Accepted on: March 12, 2009

Key Words: Regulatory networks, markovian decision processes, translational genomics, systems biology.

1. INTRODUCTION AND MOTIVATION

In biology, there are numerous examples where the (in)
activation of one gene or protein can lead to a certain cellular
functional state or phenotype. For instance, in a stable cancer
cell line, the reproductive cell cycle is repeated and
cancerous cells proliferate with time in the absence of
intervention. One can use the p53 gene if the intervention
goal is to push the cells into apoptosis, or programmed cell
death, or to arrest the cell cycle. The p53 gene is one of the
most well-known tumor suppressor genes, encoding a
protein that regulates the expression of several genes such as
Bax and Fas/Apo1, which function to promote apoptosis
[1,2]. In cultured cells, extensive experimental results
indicate that when p53 is activated, e.g. in response to
radiation, it leads to cell growth inhibition or cell death [3].
The p53 gene is also used in gene therapy, where the target
gene (p53 in this case) is cloned into a viral vector. The
modified virus serves as a vehicle to transport the p53 gene
into tumor cells to generate intervention [4,5]. As this and
many other examples suggest, it is prudent to use regulatory
models to design therapeutic interventions that expediently
modify the cell's dynamics via external signals. These
system-based intervention methods can be useful in
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identifying potential drug targets and discovering treatments
to disrupt or mitigate the aberrant gene functions
contributing to the pathology of a disease.

In [6,7], several methods to design therapeutic inter-
ventions are discussed. Some of these methods are intended
to reduce the likelihood of the gene-expression profiles
associated with aberrant cellular functions via manipulation
of a control gene. In a nutshell, whenever changing the
expression level of a control genes, e.g. p53 in the above
scenario, is perceived as a therapeutic option, these system-
based therapies search for the most effective sequence of
such changes to beneficially alter cell dynamics. The result-
ing intervention strategy specifies the appropriate expression
of the control gene in order to reduce the likelihood of
pathological cellular functions.

In the case of a cancerous tumor, the objective of

treatment could be to diminish the long-run likelihood of

metastasis. In this scenario, one may consider the correlation
between metastasis and the abundances of messenger RNA

for certain genes. For instance, the abundance of messenger

RNA for the gene Wnt5a has been found to be highly
discriminating between cells with properties typically

associated with high versus low metastatic competence [8].

In this case, the messenger RNA level of the gene Wnt5a can
be used to annotate profiles of gene expressions as desirable

and undesirable. One partition of gene-expression profiles

corresponds to high, while the other to low, metastatic
competence. Having defined a cost function to discriminate
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between the two sets of gene-expression profiles, the task

of finding an effective intervention strategy can be mathe-

matically formulated as a sequential decision making
problem for a pre-defined cost of intervention. The objective

of the decision maker is to identify a strategy that minimizes

a well-defined function of the accumulated cost over time.
Such a strategy can be seen as a system-based treatment to

avoid undesirable gene-expression profiles contributing to

the pathology of a disease.

The aforementioned method of devising therapeutic
interventions has been studied in the context of probabilistic
Boolean networks [9]. Probabilistic Boolean networks are a
class of discrete-time discrete-space Markovian regulatory
networks in which all the genes in the model are assumed to
be updated simultaneously. Major efforts have been focused
on devising intervention strategies that affect the dynamics
of probabilistic Boolean networks. The effect of an inter-
vention strategy that is beneficial in the short-term may wear
out over time. Thus, it is important to look for intervention
strategies that consider the long-run effects. In the frame-
work of probabilistic Boolean networks, the theory of
infinite-horizon stochastic control has been employed to find
optimal intervention strategies with respect to the defined
objective functions [6]. An optimal strategy determines the
actions to be taken using the external signal in response to
each gene-expression profile.

Formulating the problem of intervention in a regulatory
network as a classical infinite-horizon decision making
process, which we refer to as classical intervention through-
out this article, introduces an elegant analytical framework
that may be instrumental to enhance our understanding of
treatment discovery. Despite its conceptual benefits, the
classical intervention fails to address many practical and
technical issues. In the past few years, the classical frame-
work has been extended in several directions to improve
system-based intervention schemes. To achieve this goal, we
have envisaged a number of objectives for which both
methodology and techniques must be improved. These
proposed analytical tools provide insight into the design of
effective therapeutic interventions. These methods strive to
address some of the practical concerns that are brought up by
medical practitioners. The aim of this article is to highlight
the objectives behind each proposed method and briefly
explain it via a biological case study. This article also aims
to motivate further research in this area. We are aware that,
despite progress in this area, extensive research is required
before decision making processes can be fully integrated into
medical practice. Before proceeding further, we briefly
discuss the motivation behind each of the schemes discussed
in this paper.

1.1. Model-free Intervention Design

Sequential decision making techniques can be cate-
gorized into two classes. The first class of schemes, such as
the classical intervention, requires exact optimization of a
cost function by the decision maker to find an effective
treatment within the space of all possible treatments. It is
well-known that the exact solution of such a search problem
is not robust relative to inaccuracy of the underlying network

model. The procedures for regulatory network inference are
prone to modeling errors. They suffer from insufficient
empirical measurements and computational complexity [10].
In addition, the computational complexity of sequential
decision making optimization prohibits its use with
regulatory models possessing large numbers of components.
To bypass the impediment of model inference and to
mitigate the numerical problems associated with the exact
optimization approach, heuristic schemes can be used to
design system-based therapies. A heuristic intervention
method estimates insightful statistics of the regulatory
network from empirical measurements and utilizes these
statistics to greedily search the space of all strategies for an
effective one. Typically, effective heuristic methods provide
lower computational complexity, are robust to modeling
errors, and also adapt to changes in the underlying biological
system.

In this manuscript, we explain two heuristic intervention
schemes. First, we consider an intervention strategy based on
reinforcement learning [11]. Given the cost structure, the
reinforcement intervention estimates the statistics of the cost
function and uses this information to learn an effective
strategy. The second heuristic approach is based on mean
first-passage time statistics in Markovian processes. This
scheme utilizes the estimated mean first-passage times to
devise a greedy strategy based on a simple consideration:
postponing transition to gene-expression profiles associated
with aberrant cellular functions as long as possible. Both
heuristic strategies progressively improve their performances
as more empirical measurements become available.

1.2. Limiting the Side-effects of Therapies

Besides confronting inferential, complexity, and

robustness problems, which are essentially engineering

issues, one also needs to take into account practical medical
issues. Consider the fact that medicine is able to exploit the

biochemical differences between bacteria and human cells so

as to achieve toxic drug concentrations in the former while
sparing the latter. This selectivity largely contributes to the

success in treating bacterial infections. Unfortunately, such

high selectivity is at present elusive in the treatment of
human cancers. Hence, great efforts are required to

determine dose schedules that maximize the benefit to

toxicity ratio in cancer therapy [12]. Dose intensity is a
measure of treatment delivery that looks at the amount of

drug delivered per unit of time. To mitigate the detrimental

side effects of a treatment in general, we should account for
dose intensity in a system-based intervention method.

Therapeutic intervention should avoid undesirable gene-

expression profiles while accounting for the quantity or
frequency of applied drugs. A higher drug dose intensity can

be delivered by increasing the dose per cycle (dose

escalation) or by reducing the interval between cycles (dose
density).

Cancer treatments are generally given in cycles: each
treatment is followed by a recovery phase. Tumors, given
less time to grow between treatments, are more likely to be
eradicated. Administering high quantities of drugs at the
beginning of a chemotherapy cycle might fail for two
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reasons. First, levels higher than a certain concentration may
not increase the killing rate of cancer cells. Second, even if
they did, the toxicity could be intolerable to the patient. In
practice, optimizing the schedule means determining a way
to give the maximum integrated effect over as short a time as
possible, consistent with a reasonable quality of life [12]. To
this end, we consider a cyclic intervention method to amend
the classical intervention method and address this practical
concern. Cyclic intervention can be utilized to design
effective therapeutic strategies when each treatment is
permitted only after a recovery phase.

Dose intensity can also be regulated by the number of
interventions in a therapeutic strategy. A treatment based on
estrogen is often used by women after menopause to alter
their accelerated aging trend. The amount of estrogen
received during this treatment should not exceed a threshold.
An overdose may increase the chance of developing breast
and ovarian cancers. While this phenomenon is not fully
understood, it is conceivable that estrogen therapy may have
side effects on gene regulation. Estrogen generates two types
of complexes through binding to two classes of receptors.
The generated complexes are transported into the nucleus to
bind to the enhancer elements on the target genes with the
help of a coactivator. The coactivator is also required for
efficient transcriptional regulation by estrogen. This
function, in cooperation with a coactivator acts like a
transcription factor, affecting target genes such as the PENK
gene [13]. Two types of receptors are competing for binding
to the estrogen received via treatment [14]. The first type of
complex binds DNA better but performs less efficiently to
bind the coactivator; the second type of complex binds the
coactivator better but performs poorly when binding DNA.
When the level of estrogen is below a threshold, there is no
competition for DNA binding. Hence, the second type of
complex also binds DNA and activates the downstream
target gene PENK, with the help of the coactivator.
However, when the estrogen level is high, both types of
complexes exist at high concentrations and the second type
of complex binds and depletes the coactivator. The level of
coactivator available to complex type one drops. Hence, the
complex type one does not have necessary coactivator, and
has a small chance to bind to DNA and cause activation of
gene PENK. If the PENK gene plays a role in tumor
suppression, for instance, then this could explain why high
levels of estrogen have a tumorigenic effect. An appropriate
treatment strategy mitigates this problem by bounding the
expected number of treatments received by a patient and, as
a result, limits the dose intensity of estrogen.

In general, the likelihood of eradicating pathological
cell functions is maximized by delivering the most effective
dose intensity of a drug whose toxicity can be tolerated
by the patient. The dose intensity of a drug is directly related
to the number of interventions in a therapeutic strategy.
Constrained intervention is introduced to incorporate the
aforementioned concern in the system-based therapy design
paradigm. Using constrained intervention methods, we seek
an effective regulatory treatment that reduces the likelihood
of visiting undesirable gene-expression profiles in the long
run while providing an upper bound on the expected number
of interventions a patient can receive [15].

1.3. Accommodating Different Biological Time Scales

The scheme to update the gene values in a regulatory
model plays a crucial role in its ability to describe the
dynamics of gene interactions and thereby influences the
effectiveness of designed therapies. Common to the
previously cited intervention methods is the assumption that
the genes are updated synchronously in the underlying
network. From a biological perspective, interactions among
genes and proteins causing various processes occur over a
wide range of time-scales. In a synchronous model, the tacit
assumption is that asynchronous updating will not unduly
alter the presented biological properties central to the
application of interest. This assumption may not generally
hold. Various potential issues with synchronous networks
have been raised [16-18].

These observations motivate us to study intervention
based on discrete state-space models that can capture timing
information in gene interactions. An asynchronous Marko-
vian regulatory model, suited to our intervention objective,
should posses four characteristics: (1) it should be inferable
from the empirical time-course measurements; (2) it should
accurately represent relations among genes of interest; (3) it
should enable us to analytically study the temporal behavior
of relevant phenomena; and (4) the model should be
appropriate for the study of therapeutic intervention. With
these conditions in mind, we have proposed two asyn-
chronous Markovian regulatory networks [16]. In the first
asynchronous framework, the updating period of each gene
is fixed, but can differ from one gene to another. The second
asynchronous regulatory model introduces asynchronism
relative to the state-space of gene-expression profiles. This
approach is more suitable from the inference perspective. In
Section 6, we will briefly describe these models and
determine how they can be used as a tool to search for
effective therapeutic interventions. These asynchronous
models can potentially provide more effective intervention
strategies, depending on our ability to perform satisfactory
inference. To date, the lack of sufficient time-course data has
prohibited the inference of any realistic asynchronous
networks; however, the situation is expected to improve in
the future with the advent of new experimental techniques.

2. A MARKOVIAN REGULATORY MODEL

Constructing complex regulatory models that finely

describe the interactions among biological components

related to a disease requires precise understanding of the

underlying biological processes and extensive amounts of

experimental data. Although genetically pathological cells,

such as cancer cells, have been extensively studied, we

still lack sufficient knowledge and data sets to construct

such complex models. Meanwhile, it is equally important,

especially from a translational perspective, to discover

effective drug targets and devise therapeutic strategies with

the help of simpler regulatory models, such as Markovian

regulatory models. To this end, probabilistic Boolean

networks, which compose a class of discrete-time discrete-

space Markovian regulatory networks have been utilized

to devise system-based therapeutic interventions. This class

of rule-based models, which allow the incorporation of



466 Current Genomics, 2009, Vol. 10, No. 7 Faryabi et al.

uncertainty into inter-gene relationships, are probabilistic

generalizations of classical Boolean networks [19,20].

In a rule-based regulatory network, such as a Boolean
network, a regulatory graph describes the multivariate
interactions among the components. In a genetic regulatory
network, the vertices of a regulatory graph are the genes. A
directed edge starts from a predictor gene and ends at an
influenced gene. All the genes directed to a node are its
predictors. A regulatory rule defines the multivariate effects
of the predictors on the gene. The gene values are selected
from a set of possible quantization levels to facilitate the
modeling of gene interactions by logical rules. Strong
evidence suggests that discrete-state-space models are
capable of describing interactions between biological
components [21,22].

If genes values are quantized to two levels, then the rule-
based networks are described by a collection of Boolean
functions, with 0 or 1 meaning genes are OFF or ON,
respectively. Ternary quantization arises when we consider
individual genes to be down-regulated, up-regulated, or
invariant. This situation commonly occurs with cDNA
microarrays, where a ratio is taken between the expression
values on the test channel (red) and the base channel (green).
In this paper, we will develop the methodology for the
binary case, so that gene values are either 0 or 1. The
methodologies are nevertheless applicable to any finite
quantization level. Fig. (1) shows the regulatory graph of a
hypothetical three-gene network. There is a unidirectional
relation between genes x1 and 3x . The relation between
genes 1x and 2x is bidirectional.

Fig. (1). Presentation of a regulatory graph for an arbitrary 3-gene

Boolean network.

To completely specify a class of regulatory networks, we

need to adopt an updating scheme. Once this is

accomplished, we can translate the dynamical information of

the regulatory graph and the regulatory rules into an oriented

graph. The vertex of an oriented graph is a state, which

is the aggregated values of all the genes at a given time.

An edge traverses from one state to another state of

an oriented graph if a transition can occur in the direction

of the edge from one vertex to the other. The choice of

the updating scheme plays a crucial role in the dynamical

behavior of the network. In Boolean networks, the values

of genes are updated synchronously at equally distant

updating epochs. For instance, Figs. (1) and (2) show a pair

of oriented and regulatory graphs. According to this oriented

graph, whenever the aggregate value of the three genes

in the network is ( x1 = 0 , x2 = 1 , x3 = 0 ) and if all the

genes are updated synchronously, then the next state is

( x1 = 0 , x2 = 0 , x3 = 1 ). A regulatory graph is a static

representation of interactions among biological components,

whereas an oriented graph shows the dynamics of the

interactions among these components. A key point

concerning Boolean networks is that, in the long run, the

network will settle into an attractor cycle (e.g. “001” in Fig.

(2)), meaning that the network will endlessly cycle through

some set of states.

Fig. (2). Presentation of the oriented graph corresponding to the

3-gene regulatory graph in Fig. (1).

To incorporate the effect of latent variables outside the
model, whose behaviors influence regulation within the
system, stochasticity is introduced into the model by
allowing several possible regulatory functions for each gene
and allowing random modification of the genes. The
resulting model is called a probabilistic Boolean network
(PBN) [9], where the terminology Boolean refers to the
logical character of the relations, not that they are necessarily
binary. If the regulatory functions are allowed to change at
every time point, then the PBN is said to be instantaneously
random [9]. On the other hand, in a context-sensitive PBN,
function updating only occurs at time points selected by
a binary random switching process [23,24]. In essence, a
PBN is composed of a collection of networks (oriented
graphs); between switches it acts like one of the constituent
networks (oriented graphs), each being referred to as a
context. The switching frequency of the context differen-
tiates the instantaneously random PBN from the context-
sensitive PBN. The PBN model also allows random pertur-
bation of genes at each updating instant. By definition, the
attractors of a PBN consist of the attractors of its constituent
contexts.

The oriented graph of a PBN is a Markov chain [9,25].
The transition probabilities associated with a PBN act on its
states and describe their trajectories over time. For an
instantaneously random PBN, the state consists of a gene-
activity profile (GAP), which presents the aggregated
expressions of all the genes in the PBN at each instant; for a
context-sensitive PBN, the state includes a GAP and a
context. A PBN with n genes has 2

n
GAPs. We denote the

set of all possible GAPs by �. By the Markovian property,
the dynamic behavior of an instantaneously random PBN
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whose states are in � can be represented as a discrete-time
equation

x(t + 1) = f (x(t ),w(t )) t = 0, 1,… (1)

where x(t ) is the state at the updating epoch t . The
disturbance w(t ) is the manifestation of uncertainties in the
biological system, due either to context switching or change
in the genes resulting from random gene perturbation.

Similarly, the oriented graph of a context-sensitive PBN
can be described by a discrete-time equation

z(t + 1) = f (z(t ),w(t )) t = 0, 1,… (2)

where the state z(t ) is an ordered pair consisting

of a constituent network � and a GAP x . The set

z = (� , x) :� �{1,…, k}, x ��{ } denotes the state-space of the

oriented graph associated with a context-sensitive PBN [25].

The number of states in z is 2n � k for a context-sensitive

PBN with n genes and k contexts. The disturbance w(t ) is
the manifestation of uncertainties in the model determined

by the possibility of switching the contexts, the probability

distribution of selecting contexts after a switching event, and

the probability of changes in gene status resulting from

random perturbation.

In the remainder of this section, we present two case
studies which are used throughout the paper. We construct a
PBN for each case. The first PBN is constructed using gene-
expression data collected in a profiling study of metastatic
melanoma [11]. The second PBN is obtained by suitably
extending a Boolean model proposed in [26] for modeling
mammalian cell cycle regulation. The second network
postulates the mammalian cell cycle with a mutated
phenotype [16].

2.1. Metastatic Melanoma Gene Expression

In this sub-section, we construct an instantaneously
random PBN based on steady-state data collected in a
profiling study of metastatic melanoma in which the
abundance of messenger RNA for the gene Wnt5a was found
to be highly discriminating between cells with properties
typically associated with high metastatic competence versus
those with low metastatic competence [8]. These findings
were validated and expanded in a second study, in which
experimentally increasing the levels of the Wnt5a protein
secreted by a melanoma cell line via genetic engineering
methods directly altered the metastatic competence of that
cell as measured by the standard in vitro assays for
metastasis [27]. A further finding of interest in this study is
that an intervention that blocks the Wnt5a protein from
activating its receptor, with the help of an antibody that
binds the Wnt5a protein, can substantially reduce Wnt5a's
ability to induce a metastatic phenotype. This suggests
intervention based on a strategy that alters the contribution
of the Wnt5a gene to biological regulation. Disruption of this
influence can potentially reduce the chance of a melanoma
metastasizing, a desirable outcome. Ten genes, including the
Wnt5a gene, were selected in [28] based on the predictive
relationships among 587 genes: Wnt5a, pirin, S100p, Ret1,
Mmp3, Phoc, Mart1, Hadhb, Synuclein, and Stc3. We apply
the design procedure proposed in [29] to generate an
instantaneously random PBN possessing four constituent
BNs. The method of [29] generates BNs with given attractor
structures and the overall PBN is designed so that the data
points, which are assumed to come from the steady-state
distribution of the network, are attractors in the designed
PBN. The regulatory graphs of these BNs are given in
Fig. (3). In the binary representation of the GAPs, the order
of the genes is as listed earlier with Wnt5a being the most
significant bit and Stc3 being the least significant bit.

Fig. (3). The regulatory graphs of the four constituent Boolean networks used to construct PBN for the metastatic melanoma data.
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The intervention objective for this 10-gene network is to
down-regulate the Wnt5a, because this gene ceasing to be
down-regulated is strongly predictive of the onset of
metastasis. We will present two intervention methods using
the constructed PBN, with the aim of down-regulating the
Wnt5a gene. This model is used because the relation of
Wnt5a to metastasis is well established and the binary nature
of the up or down regulation suits a binary model. The first
step in devising any therapeutic intervention is to designate
desirable and undesirable states. This depends upon the
existence of relevant biological knowledge. In this particular
example, the use of the status of Wnt5a has resulted from
prior biological knowledge relating the status of this gene to
metastasis in melanoma tumors. A GAP is desirable if Wnt5a
is 0 and undesirable if Wnt5a is equal to 1.

2.2. Mutated Mammalian Cell Cycle

Next, we consider a context-sensitive PBN that is a
probabilistic generalization of the Boolean model proposed
in [26] for mammalian cell-cycle regulation. This context-
sensitive PBN postulates the mammalian cell cycle with a
mutated phenotype. Mutated cells grow in the absence of
extra-cellular growth factors [16].

During the late 1970s and early 1980s, yeast geneticists
identified the cell-cycle genes encoding for new classes of
molecules, including the cyclins (so-called because of their
cyclic pattern of activation) and their cyclin dependent
kinase (cdk) partners [26]. Our model is rooted in the work
of Faure et al., who have recently derived and analyzed the
Boolean functions of the mammalian cell cycle [26]. Using
these Boolean functions, the authors have been able to
quantitatively reproduce the main known features of the
wild-type biological system, as well as the consequences of
several types of mutations.

Mammalian cell division is tightly controlled. In a

growing mammal, the cell division should coordinate with

the overall growth of the organism. This coordination is

controlled via extra-cellular signals. These signals indicate

whether a cell should divide or remain in a resting state. The

positive signals, or growth factors, instigate the activation of

Cyclin D (CycD) in the cell.

The key genes in this model are CycD, retinoblastoma
(Rb), and p27. Rb is a tumor-suppressor gene. This gene is
expressed in the absence of the cyclins, which inhibit Rb by
phosphorylation. Whenever p27 is present, Rb can be
expressed even in the presence of CycE or CycA. Gene p27
is active in the absence of the cyclins. Whenever p27 is
present, it blocks the action of CycE or CycA. Hence, it
arrests the cell cycle. Table 1 summarizes the Boolean
functions of the wild-type cell cycle network.

The preceding explanation represents the wild-type cell-
cycle model. Following one of the proposed mutations in
[26], we assume that p27 is mutated and its logical rule is
always zero (OFF). In this cancerous scenario, p27 can never
be activated. As we mentioned earlier, whenever p27 is
present, Rb can be expressed even in the presence of CycE or
CycA. For the mutated cell-cycle network, however, p27 is
always zero and Rb cannot be expressed in the case where
CycD is not present but CycE or CycA is active. This
mutation introduces a situation where both CycD and Rb
might be inactive. As a result, in this mutated phenotype,
the cell cycle continues in the absence of any growth factor.
In other words, we consider the states in which both Rb
and CycD are down-regulated as undesirable states, when
p27 is mutated. Table 2 summarizes the mutated Boolean
functions.

The Boolean functions in Table 2 are used to construct a
context-sensitive PBN model for the cell cycle [16]. The
extra-cellular signal to the cell-cycle model is considered to
be a latent variable. The growth factor is not part of the cell
and its value is determined by the surrounding cells. The
expression of CycD changes independently of the cell's
content and reflects the state of the growth factor. Depending
on the expression status of CycD, we obtain two constituent
Boolean networks for the PBN. The first constituent Boolean
network is determined from Table 2 when the value of CycD

Table 1. Wild-type Boolean Functions of Mammalian Cell Cycle

Product Predictors

CycD Input

Rb
(CycD � CycE � CycA � CycB) � ( p27 � CycD � CycB)

E2F
(Rb � CycA � CycB) � ( p27 � Rb � CycB)

CycE
(E2F � Rb)

CycA
(E2F � Rb � Cdc20 � (Cdh1 �UbcH10)) � (CycA � Rb � Cdc20 � (Cdh1 �UbcH10))

p27
(CycD � CycE � CycA � CycB) � ( p27 � (CycE � CycA) � CycB � CycD)

Cdc20 CycB

Cdh1
(CycA � CycB) � (Cdc20)

UbcH10
(Cdh1) � (Cdh1 �UbcH10 � (Cdc20 � CycA � CycB))

CycB
(Cdc20 � Cdh1)
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is equal to zero. Similarly, the second constituent Boolean
network is determined by setting the value of CycD to one.
To completely define the context-sensitive PBN, the
probability of switching the context, the probability that a
gene perturbs, and the probability distribution of selecting
each constituent network have to be specified. We assume
that these are known. Here, we set the switching and the
perturbation probabilities each equal to 0.001, and assume
that the two constituent networks are equally likely.

According to Table 2, the mutated cell-cycle PBN

consists of nine genes: CycD, Rb, E2F, CycE, CycA, Cdc20,
Cdh1, UbcH10, and CycB. The above order of genes is used

in the binary representation of the states of the context-

sensitive PBN, with the context of the networks, CycD, as
the most significant bit. Rb is in the most significant position

in the gene-activity profiles and CycB is placed at the least

significant bit.

Choosing CycD and Rb as the most significant bits in the

state representation of the context-sensitive PBN facilitates

the characterization of the undesirable states. We assume that

the simultaneous down-regulation of CycD and Rb, i.e. the

cell growth in the absence of growth factors, is undesirable.

Consequently, the state-space is readily partitioned into

undesirable and desirable states. As mentioned earlier,

application of any system-based therapeutic method with

external control requires the designation of desirable and

undesirable states, and this depends upon the existence of

relevant biological knowledge. In the cell-cycle example

when p27 is mutated, the functionality of the network

suggests that the states in which both Rb and CycD are

down-regulated should be avoided.

3. CLASSICAL THERAPEUTIC INTERVENTION

In PBNs, where genes are updated simultaneously,

appropriate transition probability matrices that act on the

states of the oriented graphs are sufficient to fully describe

the dynamics in equations (1) and (2). Methods have

been proposed that use information in these probability

distributions to devise effective therapeutic strategies [6,7].

Among these, an infinite-horizon sequential decision making

method has been proposed to design therapeutic strategies.

Altering the long-run likelihood of states favorable to a

pathological cell functionality is the objective of the decision

maker. To this end, the task of finding an effective inter-

vention strategy has been formulated as a classical sequential

decision making optimization. For a pre-defined cost of

intervention and a cost-per-stage function that discriminates

between the states of the system, the objective of the

decision maker is to minimize the accumulated expected cost

associated with the progression of the system. That is, given

the state of the system, an effective intervention strategy

identifies which action to take so as to minimize the overall

expected cost. Consequently, the devised intervention

strategy can be used as a therapeutic strategy that alters the

dynamics of aberrant cells to reduce the long-run likelihood

of undesirable states favorable to the disease.

To be more precise, in the presence of an external
regulator, it is assumed that the PBN has a binary
intervention input u(t ) at each epoch t . The intervention
input u(t ) , which takes values in set C = {0,1} , specifies the
action on a control gene. Treatment alters the status of the
control gene, which can be selected among the genes in the
network. If treatment is applied, u(t ) = 1, then the state of
the control gene is toggled; otherwise the state of the control
gene remains unchanged. To completely define the decision
making procedure, a cost-per-stage is associated to each
possible event. In general, the cost-per-stage at each instant
t depends on the current state and the action of an external
signal at that instant. Given the system is initiated from
state z0, the sequential decision maker searches for an
optimal strategy �� , one that minimizes the expected cost
aggregated over the long-run progression of the PBN. In
other words, in an infinite-horizon intervention problem, we
seek an admissible intervention strategy

�� that minimizes
the expected total cost for each initial state z0:

��(z0 ) = arg
�

min (3)

Table 2. Mutated Boolean Functions of Mammalian Cell Cycle

Product Predictors

CycD Input

Rb
(CycD � CycE � CycA � CycB)

E2F
(Rb � CycA � CycB)

CycE
(E2F � Rb)

CycA
(E2F � Rb � Cdc20 � (Cdh1 �UbcH10)) � (CycA � Rb � Cdc20 � (Cdh1 �UbcH10))

Cdc20 CycB

Cdh1
(CycA � CycB) � (Cdc20)

UbcH10
(Cdh1) � (Cdh1 �UbcH10 � (Cdc20 � CycA � CycB))

CycB
(Cdc20 � Cdh1)

J� ( z0 ),
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where J� (z0 ) is the expected total cost aggregated over
the long run. A strategy � is a sequence of decision rules

for each updating epoch t acting on a control gene. In
general, a decision rule at updating epoch t selects action
u(t ) according to the history of the system as well as the

current state.

4. MODEL-FREE INTERVENTIONS FOR META-

STATIC MELANOMA

The classical intervention described in Section 3 requires
exact optimization of the cost function (3). The effectiveness
of a strategy devised from the solution of (3) depends on
the accuracy of the underlying regulatory network. More-
over, the computational complexity of optimization problem
(3) increases exponentially with the number of genes in
the model. To mitigate this numerical challenge and bypass
the impediment of model estimation, two heuristic methods
have been proposed. One is based on reinforcement learning
(RL) [11], and the other is based on mean first-passage
times (MFPT) [30]. In the framework of Markovian
regulatory networks, these heuristic intervention schemes
learn effective strategies from two different statistics of the
model.

Given the cost structure, RL intervention learns an

effective strategy based on several generated trajectories of

states and applied actions. These empirical measurements are

used to estimate the average aggregated cost J� (z0 ) with
respect to various actions and observed states. The RL

scheme yields an effective therapeutic strategy, while

possessing constant complexity with respect to the number

of genes [11]. It has been shown that in the scenario when

a large number of measurements is available the RL strategy

converges to the strategy devised by the classical inter-

vention.

The MFPT intervention devises an effective strategy
based on two greedy actions: (1) it is preferable to reach
desirable states as quickly as possible; (2) it is preferable to
leave undesirable states as early as possible. Given a control
gene, if without intervention, a trajectory originating from a
particular desirable state reaches the set of undesirable states
on average faster than when there is a one-time intervention,
then it is reasonable to intervene and force the trajectory of
the model to initialize from the new state specified by the
intervention. Similarly, if without intervetion, the trajectory
originating from an undesirable state reaches the set of
desirable states on average faster than when there is a one-
time intervention, then it is reasonable not to intervene.
These insights motivate the design of intervention strategies
using mean first-passage times, since the latter are precisely
the statistics used to quantify the average time to transition
from a state to a set of states. When time-course measure-
ments are available, the mean first-passage times from each
desirable state to the set of undesirable states and, vice versa,
from each undesirable state to the set of desirable states,
can be estimated. The MFPT algorithm then utilizes these
estimated statistics to devise its heuristic strategy.

A salient feature in both heuristic methods [11] and [30]
is that they are model-free, i.e. they do not require perfect

knowledge of the model parameters. We should point out
that it is still assumed that the dynamics of the underlying
system are modeled as a Markovian network. The term
model-free implies that it is not required to estimate the
parameters of the PBN explicitly. As explained in Section 3,
the intervention method for PBNs is model dependent,
requiring at least the knowledge of the transition probability
matrix associated with the underlying PBN. This can be
derived from the PBN if the latter is known. Since in practice
PBNs are not known except via system identification from
experimental data, one is faced with a difficult inference
problem [10]. This problem can be avoided by directly
inferring the transition probability matrix; however, this is
still a formidable task because the complexity of estimating
the transition probabilities of a Markov chain increases
exponentially with the number of genes in the model. When
time-course measurements are available, the RL and MFPT
strategies can be implemented directly from the empirical
measurements. Hence, they have low complexity, are robust
to modeling errors, and are also adaptive to changes in the
underlying biological system.

The RL and MFPT strategies are employed to control the

Wnt5a-related network described in Section 2.1. The

performances of these two heuristic methods are also

compared to that of the classical intervention. As noted in

Section 2.1, down-regulation of Wnt5a is a reasonable

objective for an intervention strategy. The RL and MFPT

strategies are applied to the inferred PBN. Here, pirin is

chosen as the control gene [11]. As performance measures,

we consider the percentages of reduction in the total

probability of the undesirable states in the long run when the

classical, RL, and MFPT strategies are applied; these being

denoted by �Popt , �PRL , and �PMFPT, respectively. It should

be emphasized that the strategy of the classical intervention

is optimal with respect to the cost function, since the full

model is assumed to be known to the decision maker.

Time-course measurements for 106
time-steps from the

PBN constructed for the melanoma case study are generated.

The application of the RL and MFPT strategies are preceded

by a learning duration of 10k measurements, with k = 3,…, 6.

Hence, �PRL and �PMFPT are functions of the learning duration.

On the other hand, �Popt is computed from the PBN by

directly solving the optimization problem (3). Fig. (4)

shows the differences between �PRL and �PMFPT with �Popt

as functions of the logarithm of the learning duration. After

103
measurement points, the difference between the perfor-

mance of MFPT and the classical strategy is 0.114 , while
this difference is 0.166 in the case of the RL strategy. In

particular, for a lower number of observations, which corres-

ponds to a more realistic scenario, the MFPT intervention

outperforms the RL intervention. On the other hand, after

106
measurement points, the difference between the perfor-

mances of the MFPT scheme and the classical method is

0.003 , while the same difference is 0.002 in the case of the

RL method. This shows that as the size of the training data

increases, the RL strategy outperforms the MFPT inter-

vention strategy. Hence, the amount of available data would
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be a deciding factor in choosing between these two heuristic

schemes.

Fig. (4). Comparison between the loss of performance in MFPT and

RL methods with respect to classical intervention as a function of

the log of the learning duration.

Existing technologies are not capable of providing

sufficient empirical measurements for inference of PBN

parameters explicitly [10]. To reduce the inference problem,

one might directly estimate the Markov chain associated

with the PBN, which is all that is required for the classical

intervention method. The performance of the resulting

intervention strategy will depend on the accuracy of the

estimation. We have conducted another set of experiments

to compare the performance of the MFPT scheme with

an optimal strategy devised from the estimated transition

probability matrix of the Markov chain. We generate

synthetic time-course data for 100, 000 time-steps from

an existing model. Using the synthetic time-course data,

we estimate the mean first-passage times after each 10k

time-steps, for k = 2,…, 5. As the duration of estimating the

mean first-passage times increases, �PMFPT approaches

�Popt
. Fig. (5) shows the average of �Popt

� �PMFPT, where

�Popt
is obtained from the transition probability of the actual

PBN, for various learning durations over 1000 trials. For an
optimal policy based on the Markov chain estimated from

the data, we denote the shift in the steady-state distribution

by �Popt�. Fig. (5) shows the average of �Popt
� �Popt�

with

various learning durations over 1000 trials. The graphs

clearly demonstrate the superior performance of the model-

free approach using the MFPT algorithm. The MFPT scheme

using 100 measurements outperforms the intervention

strategy devised from an estimated Markov chain using

100, 000 observations.

5. LIMITED-SIDE-EFFECT INTERVENTIONS FOR

MUTATED MAMMALIAN CELL CYCLE

In the classical intervention, at each epoch a devised
strategy decides whether to intervene or not in order to
reduce the likelihood of undesirable states without imposing

any restrictions on the quantity or frequency of applied
treatments. In medical practice, however, dose intensity in a
treatment is limited to mitigate the detrimental side effects of
therapy. Here, we describe two approaches that amend the
unrestricted classical intervention strategy with the goal of
accommodating such constraints. In the first approach,
referred to as cyclic intervention, the frequency of applying
treatments is adjustable with each treatment being followed
by a recovery phase that allows the side effects to subside
[31]. Using the mutated cell-cycle network as an example,
we explain how to design an effective cyclic therapeutic
strategy when the treatment is only permitted after a fixed
recovery phase. An alternative approach to control side
effects is to bound the quantity of the prescribed
interventions [15]. To determine the best integrated effect
consistent with a reasonable quality of life, we seek an
effective therapeutic method that reduces the likelihood of
states related to an undesirable cell functionality by
minimizing the associated cost function, while providing an
upper bound on the expected number of interventions
received by a patient. Once again a constrained intervention
strategy for the mutated cell-cycle network is designed.

Fig. (5). Average of �Popt-�Popt* (solid) and �Popt - �PMFPT (dash)

over 1000 trials as a function of the logarithm of learning duration.

5.1. Cyclic Therapeutic Intervention

Certain types of cancer therapies, such as chemotherapy,
are given in cycles with each treatment being followed by a
recovery period. During the recovery period, the side effects
tend to gradually subside. In the classical intervention
framework, at every state transition of the system, the
intervention strategy dictates whether to apply treatment or
not. The objective in [31] is to devise an effective
intervention strategy under the constraint that intervention is
permitted only every W transitions, where W denotes the
length of the recovery period. A classical intervention
strategy that is optimal for the case where intervention is
permitted at every transition is not necessarily optimal (i.e.
may not minimize the expected total cost) if one is only
permitted to apply treatment every W transitions. We refer
to the strategy that is optimal when intervention is permitted
every W transitions as a cyclic strategy.
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A treatment window is defined to be every W transitions
of the system. Intervention is permitted at the beginning of a
treatment window. Thereafter, the system transitions W �1
steps without intervention. To impose the cyclic constraint
on strategies, a new Markov chain is constructed with an
augmented state space based on the original Markov chain of
the mutated cell-cycle network. A cyclic strategy can be
found by solving the stochastic control problem for the
Markov chain with the augmented state space via classical
dynamic programming algorithms. However, this procedure
may be prohibitive due to the size of the augmented state
space. To address this issue, it has been shown that the
augmented state space can be collapsed to a compressed state
space of size equal to the original state space [31]. This
reduction in the size of the state space is accomplished by
properly accumulating the expected cost of the system
progression during the recovery period. The new cost
function is used to select the proper action at the time
instants when intervention is permitted. In [31], the
convergence of the corresponding dynamic programming
algorithm is established, and it is also shown how the cyclic
intervention strategy can be devised.

In [31], the cyclic intervention in the mutated mammalian

cell-cycle network is demonstrated. The resulting reduction

in the likelihood of undesirable states, �PW, and the average
total cost for both the classical and the cyclic strategies are

shown in Figs. (6) and (7), respectively. It is evident from

these figures that in the long run less treatment is applied for

a larger treatment window and consequently a higher cost is

induced. Hence, the average costs of both the classical and

cyclic strategies increase as the treatment window increases.

Figs. (6) and (7) show that, for the mutated cell-cycle

network, the classical strategy approximates the optimal

cyclic strategy quite well. However, this may not hold in

general. Indeed, our comprehensive numerical studies for

various network structures in [31] shows that, in general,

these two intervention strategies exhibit different properties.

Fig. (6). Comparison of the cyclic and classical strategies for treat-

ment windows from 1 to 10 using the mutated mammalian cell-

cycle network: average total cost.

5.2. Constrained Therapeutic Intervention

Cancer treatment may include the use of chemotherapy,

radiation therapy, targeted gene therapy, etc. All of these

treatment options are directed at killing or eradicating

cancerous cells. Unfortunately, cancer treatments may also

damage healthy cells. This results in complications and

harmful side effects. It is therefore desirable to restrain the

side effects of a treatment. This goal can be achieved by

enforcing an upper bound on the expected number of

treatments a patient may receive during therapy. A classical

intervention strategy, devised by solving the unconstrained

optimization problem (3), reduces the chances of visiting

undesirable states; however, it does not provide a mechanism

for constraining the frequency of applying treatments within

the resulting intervention strategy. To address this

shortcoming, constrained intervention is introduced by

imposing an appropriate constraint on the optimization

problem (3).

Fig. (7). Comparison of the cyclic and classical strategies for treat-

ment windows from 1 to 10 using the mutated mammalian cell-

cycle network: normalized change in the aggregated probability of

undesirable states before and after the intervention.

This is accomplished by associating another cost-per-

stage c(z,u) with each state-action pair (z,u) . This new

cost-per-stage should be defined to appropriately reflect the

intended constraint. Specifically, we bound the expected

number of interventions in the long run to limit the dose

intensity of an intervention within a prescribed treatment.

To this end, we define the total constraining cost given

a strategy � and an initial state z0
as C� (z0 ) . Having

this new constraining cost function, we reformulate the

unconstrained intervention problem (3) in the mutated cell-

cycle model as a constrained intervention,

�
min J� (z0 ), such that C� (z0 ) � Ctotal , (4)

where Ctotal is the upper bound on the expected number of

interventions in the long run.

The complete treatment of the constrained optimization

problem (4) is presented in [15]. In that reference, it is

shown that the objective function J
�

(z0 ) and the cons-



Recent Advances in the Intervention in Markovian Regulatory Networks Current Genomics, 2009, Vol. 10, No. 7 473

training cost function C
�

(z0 ) can be presented as a linear

combination of the occupation measure and the cost

functions. The occupation measure can be interpreted as the

probability of occupying state-action pairs in the long run,

given that the PBN is initiated from state z0 and strategy �

is used for the intervention. Consequently, the expected

number of interventions in the long run can be constrained

by the upper-bound Ctotal if the cost-per-stage for each state-

action pair is assigned as follows: c(z,u) = 0 if no inter-

vention is applied and c(z,u) = 1 otherwise. This enables us

to redefine the constrained optimization problem (4) as a

linear program. An optimal constrained strategy of the

intervention problem (4) can then be found based on a

solution of this linear program.

If we assume that any gene in the mutated cell-cycle

network could be used for therapeutic intervention, then it is

natural to ask which gene would be the most effective lever

point. To this end, we calculated constrained intervention

strategies for each of the genes in the mutated cell-cycle

network. The initial state is set to the undesirable state

with the highest long-run probability prior to intervention,

and the upper bound of the frequency of applying inter-

ventions was varied. Table 3 lists the percentage change in

the aggregated probability of undesirable states as a result of
the intervention.

Among all the genes, Rb offers the best performance

when intervention can be applied without any constraint

(Ctotal = 1 ). Restricting the expected number of interventions

to at most 10% and intervening again with Rb, the

aggregated probability of undesirable states can be reduced

to less than 12% . This information could be translated to
restricting the dose density of a prescribed drug acting on Rb

once its side effects are known. If we now slacken the limit

on the expected number of applied interventions to, say, less

than 30% , then we can reduce the chance of the cancerous

states by 98% . The results of Table 3 demonstrate that the

choice of the most effective control gene may vary

depending on the restrictions imposed on the intervention.

For instance, when the bound on the expected number of

interventions is set to 30% , the constrained strategy based
on E2F performs as well as the Rb-based constrained

strategy.

6. INTERVENTIONS FOR ACCOMMODATING

DIFFERENT BIOLOGICAL TIME SCALES

From a biological perspective, interactions among genes
causing transcription, translation, and degradation occur over
a wide range of time-scales. Earlier studies suggest that
asynchronously updating the genes alters the global behavior
of synchronous networks due to the change in their oriented
graph, which models the dynamics of the system [16-18].
Synchronous abstraction is used under the implicit
assumption that asynchronous updating will not unduly alter
the properties of a system central to the application of
interest [16]. Clearly, some properties will be altered. For
instance, in Fig. (2), if all the genes are not simultaneously
updated, then “010” may transition to some other state
instead of transitioning to the attractor state “001”.

These observations motivate the examination of
intervention in asynchronous models. Since relaxing the
synchronous assumption alters the long-run behavior of
a regulatory model, alternative approaches are needed
to influence its dynamics. In [16], two new rule-based
asynchronous models and methods to derive effective
intervention strategies for each one of them are proposed.
The first model introduces asynchronism in probabilistic
Boolean networks at the gene level. This method is akin to
our understanding from an interaction between biological
components.

The second model extends PBNs by considering
asynchronism at the state level. This approach is resourceful
from a translational perspective. While the physical
evolution of the biological gene network occurs over

Table 3. The Percentage Change in the Aggregated Probability of States with Down-Regulated CycD and Rb Based on Various

Control Genes and Constraint Bounds.

Control Gene Ctotal

0.1 0.3 0.5 1.0

Rb 61.96 98.33 98.33 98.34

E 2 F 57.43 98.00 98.00 98.02

CycE 28.37 28.41 28.44 28.51

CycA 16.56 16.60 16.62 16.69

Cdc 20 39.15 41.47 41.48 41.61

Cdh 1 27.55 41.51 41.56 41.65

UbcH 10 6.49 6.52 6.57 6.69

CycB 39.33 41.86 41.91 41.99



474 Current Genomics, 2009, Vol. 10, No. 7 Faryabi et al.

continuous time, the PBN records only the state transitions
and contains no information on the time between the
individual transitions. The PBN model inherits this property
from the classical Boolean model, which it generalizes.
Hence, the problem can be explained in the framework of the
Boolean model. Figs. (8) and (9) show two continuous-time
realizations that are equivalent from the point of view of the
model of Fig. (1). In both Figs. (8) and (9), the initial state is
“100”. We observe the evolution “100”� “010” � ”001” ,
at which point there are no other changes because “001” is
an attractor of the network. While equivalent from the
perspective of the Boolean model, from the perspective of
continuous time observation, the realizations of Figs. (8) and
(9) are not the same. For instance, in the second realization,
the sojourn time in state “010” is much longer than in the
first realization. This may be of no concern if we are only
interested in tracking the state transitions. On the other hand,
suppose we are considering intervention and penalizing
undesirable states. Then, if “010” is an undesirable state,
the penalty should be greater in the second realization;
that is, the penalty needs to consider the sojourn time in
a state. This problem has been addressed in the framework
of asynchronous Markovian regulatory networks by consi-
dering the process to be defined over continuous time.

Fig. (8). A realization of trajectories for the oriented graph in Fig.

(2).

Fig. (9). A realization of trajectories for the oriented graph in Fig.

(2).

6.1. Deterministic-Asynchronous Context-Sensitive PBNs

The first proposed asynchronous model, called a
deterministic-asynchronous context-sensitive probabilistic
Boolean network (DA-PBN), is an extension of probabilistic
Boolean networks in which the time scales of the biological
updates at various genes can be different, each gene being
updated based on an individual period, which may differ
from one gene to another. Yet, the updating period of
each gene is fixed given the context of the network. The
term “probabilistic” emphasizes the random selection of
a context, while the term “deterministic” refers to the
deterministic asynchronous protocol within each context of
the regulatory network. As a stochastic Boolean network
with asynchronous updates, a DA-PBN expands the benefits
of synchronous PBNs by adding the ability to cope with
temporal context as well as regulatory context.

When the context of a biological system is known,
asynchronism in regulatory networks is deterministic: that is,
the updating period of each gene is fixed given the condition
of the cell. However, deterministic-asynchronous Boolean
networks pose practical challenges. Even if we can measure
the level of each gene in isolation while the other genes
remain constant, owing to the effects of measurement noise
and the existence of latent variables, we cannot exactly
specify the updating periods of genes. At best, we can
estimate a set consisting of the most probable updating
periods for each gene in the network, depending on the status
of latent variables. A set of updating periods, whose
members are the deterministic periods of each gene in the
regulatory network, defines the updating protocol of a
deterministic asynchronous Boolean network. This means
that there is a finite collection of deterministic asynchronous
Boolean networks that defines the dynamics of the system.
The updating periods of genes depend on the temporal
context of the biological system, which can be influenced by
latent variables. The regulatory interactions among genes in
a deterministic-asynchronous Boolean network are described
similarly to a classical Boolean network.

In a DA-PBN, the behavior of latent variables influences
both the regulation and the updating periods of genes. As
with a synchronous PBN, uncertainty about the context
of a DA-PBN is captured through a probability distribution
on the possible contexts, each being a deterministic-
asynchronous Boolean network, which in turn describes the
asynchronicity in the DA-PBN.

We resort to a synchronization method to intervene in a
DA-PBN [16]. A price in terms of computational complexity
has to be paid for synchronizing the model. This
synchronization procedure translates the problem of
intervention in a DA-PBN to infinite-horizon discrete-time
sequential decision making. This mapping augments the
state-space of a PBN, specified by the logical rules of the
DA-PBN, with the necessary timing history of the DA-PBN.
The augmented state-space has a considerably higher
dimension. Now that the oriented graph of a DA-PBN is
represented by a Markov chain with augmented state-space,
all the previous intervention methods are applicable to this
asynchronous model with slight modifications.
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6.2. Semi-Markov Asynchronous Regulatory Networks

Assuming asynchronism at the gene level for Boolean
networks poses practical and theoretical impediments that
impede independent gene updating from serving as a basis
for designing effective therapeutic interventions [16,32]. In
particular, the delay and the updating order of a given gene
are only observable in conjunction with the activity levels of
other genes and proteins involved in the regulation process.
Estimating the updating duration of each gene in isolation,
independently of the values of other genes, is highly
problematic, if not impossible. In practice, we can measure
the aggregated values of all the genes (state) at each
observation instant. The inter-transition interval between two
states can then be modeled by a random variable.

Experimentally validated Boolean rules are considered in
[26,32]. Under a synchronous assumption, the oriented
graphs can accurately determine the phenotypic behavior of
the underlying biological processes; however, these studies
suggest that asynchronously updating the genes when
utilizing the same Boolean rules generates very complex
pathways which possess many incompatible and unrealistic
phenotypes. It appears that asynchronously updating the
individual genes changes the global behavior of the model
by changing its oriented graphs.

Several studies suggest that rule-based regulatory models
should maintain the topology of the oriented graph generated
by experimentally validated predictor rules, as if the genes
are coupled [26,32,33]. This is the type of information one
can obtain from the biological literature and also in
laboratory experiments. In other words, regulatory models
should accurately manifest the logical relationships, i.e. the
regulatory graph, governing the interactions of genes
according to the gathered knowledge and translate them into
the oriented graph specifying the dynamics of the disease.
Moreover, they should enable the analysis of the temporal
behavior of the pathological cellular functions.

Motivated by these observations, a semi-Markov
asynchronous regulatory network (SM-ARN) is proposed in
[16]. In an SM-ARN, asynchronism is at the level of
aggregated gene expressions, i.e. states. In this model, the
empirically measurable timing information of pathological
cellular functions is incorporated into the model. This timing
information determines the typical time delay between
transitions from one state to another. The order of updating
genes and their relative time delays depend on the levels of
other regulatory components. Time-course data sets enable
the estimation of inter-transition times between states, not
the updating time of each gene in isolation.

An SM-ARN is specified with two sets of information.
The first set determines the rule-based multivariate
interactions between genes. Considering simultaneous
updating, we can specify the oriented graph of the model
based on this information. In other words, the first set of
information specifies an embedded-PBN, which is generated
from a given set of logical rules for updating each gene.
The generated oriented graph guarantees the predictability of
the rule-based topology. The second set of information
consists of the distributions of inter-transition intervals
between any two states that are directly connected in the

oriented graph. These can be empirically inferred from time-
course data sets.

Designing optimal intervention strategies based on the
SM-ARN model involves results from the theory of semi-
Markov decision processes. Upon appropriately formulating
the problem of intervention in the SM-ARN model, an
effective intervention strategy can be devised. This strategy
minimizes the time that the system spends in the undesirable
states.

In [16], an SM-ARN is designed that models the

dynamics of mutated mammalian cell-cycle regulation based

on the logical rules described in Subsection 2.2, where it is

assumed that the distribution of the inter-transition interval

follows an exponential distribution. Therefore, we need the

rate of the transition from state z1 to state z2 to specify their

inter-transition interval distribution. Gene-expression data

are used to determine the probability of the transition from

state z1 to state z2 in the embedded-PBN. The rate of the

transition from state z1 to state z2 can be defined from this

probability [16]. The logical rules corresponding to the

mutated scenario are used to construct the embedded-PBN of

the cell-cycle's SM-ARN. The defined embedded-PBN

maintains the topology of the oriented graph generated by

the rules in Table 2.

To avoid states with simultaneously down-regulated
CycD and Rb, a semi-Markov decision process is used to
spell out intervention strategies for the SM-ARN of the
mutated cell-cycle. The rate of penalizing the states with
down-regulated Rb and CycD is set to be higher than those
for the states in which these two genes are not
simultaneously down-regulated.

Fig. (10) depicts the fraction of time that the SM-ARN
spends in each state when there is no intervention. Per this
figure, the aggregated fraction of time that the mutated cell-
cycle model spends in the states with simultaneously down-
regulated CycD and Rb is 49% . The fraction of time that the
SM-ARN of mutated mammalian cell cycle spends in states
after Rb-based intervention is shown in Fig. (11). It is clear

Fig. (10). The fraction of time that the SM-ARN of mammalian cell

cycle spends in each state prior to intervention. The vertical line

separates the undesirable states from the desirable states.
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that after intervention using Rb as the control gene, the
fraction of time that the model spends in the undesirable
states is significantly reduced. Directly using Rb as the
control gene, the fraction of time that the model spends
in the undesirable states is reduced to less than 2% . If
direct control based on Rb is not feasible, then one can use
E2F as the control gene. In this case the system spends
slightly more time in the undesirable states, but even this
value is still less than 4.5% . Practically, the difference
between the performances of these two control genes is
insignificant. Figs. (10) and (11) lead us to the conclusion
that the intervention method effectively alters the dynamics
of the mutated cell-cycle SM-ARN.

Fig. (11). The fraction of time that the SM-ARN of mammalian cell

cycle spends in states after intervention using Rb as the control

gene. The vertical line separates the undesirable states from the

desirable states.

7. CONCLUDING REMARKS

This paper has reviewed recent developments in the
control of gene regulatory networks that aim to overcome
engineering issues related to complexity, inference, and
robustness, and also aim to develop intervention strategies
commensurate with practical medical constraints. These
developments have only begun to deal with these issues and
much remains to be accomplished relative to these two aims.
This paper provides a non-mathematical, biologically
oriented treatment in the hope that it will generate further
investigations on the part of biologists, engineers, mathe-
maticians, and computer scientists interested in translational
genomics.
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