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Abstract—The control of transmit power has been recognized
as an essential requirement in the design of cellular code-division
multiple-access (CDMA) systems. Indeed, power control allows
for mobile users to share radio resources equitably and efficiently
in a multicell environment. Much of the work on power control
for CDMA systems found in the literature assumes a quasi-static
channel model, i.e., the channel gains of the users are assumed to
be constant over a sufficiently long period of time for the control
algorithm to converge. In this paper, the design of dynamic power
control algorithms for CDMA systems is considered without the
quasi-static channel restriction. The design problem is posed as a
tradeoff between the desire for users to maximize their individual
quality of service and the need to minimize interference to other
users. The dynamic nature of the wireless channel for mobile users
is incorporated in the problem definition. Based on a cost mini-
mization framework, an optimal multiuser solution is derived. The
multiuser solution is shown to decouple, and effectively converge,
to a single-user solution in the large system asymptote, where the
number of users and the spreading factor both go to infinity with
their ratio kept constant. In a numerical study, the performance
of a simple threshold policy is shown to be near that of the optimal
single-user policy. This offers support to the threshold decision
rules that are employed in current cellular CDMA systems.

Index Terms—Code-division multiple access (CDMA), dynamic
programming, optimal control, power control, spread spectrum,
wireless communication.

I. INTRODUCTION

I N A CELLULAR code-division multiple-access (CDMA)
environment, a set of mobile users shares a common band-

width allocation. The burden of allocating radio resources equi-
tably on the reverse link is handed over to a power control algo-
rithm. In this paper, we consider the control of transmit power
for CDMA systems in the context of constant rate applications.
By constant rate applications, we refer to real-time applications
with stringent delay constraints and fixed data rate requirements
such as cellular telephony. For any such application, an appro-
priate wireless connection must be maintained at all times. The
alternative of buffering data and scheduling users based on their
link quality is not acceptable because of the inherent delay as-
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sociated with this paradigm. We therefore center our attention
on power control algorithms that attempt to provide users with
a uniform quality of service over time.

Previous work on power control for cellular systems includes
the study of optimal transmission strategies [1]–[7], as well as
the design of practical power control policies [8], [9]. Power
control has been shown to increase the bandwidth efficiency
and the capacity of both channelized cellular systems [10], [11]
and cellular CDMA systems [12]–[14]. Early analytical work
[2], [11], [15] has focused on maximizing the minimum user
signal-to-interference ratio (SIR), an approach known as SIR
balancing. The problem of power control has subsequently been
redefined as minimizing the total transmitted uplink energy sub-
ject to maintaining the SIR of each user above an individual
threshold value [3], [5]. The latter formulation better incorpo-
rates the notion of quality of service and it is suitable for het-
erogeneous systems, since it allows for the specification of indi-
vidual link requirements. Distributed power control algorithms
have been studied in a wide range of contexts [1], [4], [6], [8].
Their implementation usually entails iterative methods. An el-
egant framework which provides insightful results about itera-
tive power control algorithms for quasi-static channels has been
proposed by Yates [5]. Integrated power control and base sta-
tion assignment has been investigated by Hanly [16], and Yates
and Huang [17]. Hanly [7] has also addressed the joint topic of
power control and capacity for spread spectrum systems.

Most of the work found in the literature on this topic
[1]–[11], [15], [17]–[20] has been restricted to quasi-static
channel models, i.e., models in which the channel gain of every
user is assumed to remain approximately constant over suffi-
ciently long periods of time. The performance results obtained
under this assumption will be valid so long as the reaction
time of the power control algorithm is small compared with
the coherence time of the underlying wireless channel. In other
words, the transmit power of each user is implicitly assumed
to converge to its optimal level before any significant change
occurs in the channel state. Unfortunately, this assumption may
not necessarily hold for practical systems [18].

A second set of papers on power control [21]–[24] recognizes
the random nature of the wireless link. Yet, in these papers, the
controller is assumed to have instantaneous knowledge of the
current channel state. In other words, the controller knows the
exact state of the channel at the beginning of the transmission
interval. Under this assumption, the optimal power assignment
depends solely on the probability density function of the channel
gain, and not on the time dynamics of the channel evolution.
Although such a formulation provides insightful results on the
capacity of fading channels, it does not account for feedback
delay or for imperfect state estimates, for instance.
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The need to incorporate the stochastic, dynamic nature of the
wireless channel into the power control problem formulation
has been identified clearly in previous work [18], [24]. In this
paper, we follow this avenue of research and model the wireless
channel as a stochastic process. Furthermore, we acknowledge
that the controller has to select an appropriate transmission level
at the beginning of the control period and that it must therefore
rely on the past values of the channel state to predict the current
one. This contrasts with the quasi-static power control problem
formulation, or “snap-shot” approach, where the channel gain of
every user is assumed to remain constant. More specifically, we
include a stochastic channel model as part of the problem defi-
nition. This strategy enables us to account for channel dynamics
in the derivation of an optimal solution rather than relying pri-
marily on the algorithm structure for adaptation. We emphasize
however that an efficient power control algorithm can only be
derived if the time over which the channel gain is highly cor-
related is much greater than the time period between succes-
sive control signals. This leads us to define a system parameter,
called the control period , as the reciprocal of the control rate

, i.e.,

(1)

The smaller the value of , the more rapidly the power control
algorithm can adapt to a change in channel gain. In addition to a
small control period, a realistic control policy must account for
physical constraints present in the system. One such restriction
is a limited data rate dedicated to power control on the forward
link. The need to adapt promptly to channel variations together
with a constrained feedback data rate point to power control al-
gorithms that use simple, frequent control signals. In this work,
our goal will be to design a pragmatic uplink power control al-
gorithm in context of constant rate applications. We pose the de-
sign problem as a tradeoff between the desire for users to max-
imize their individual quality of service and the need to min-
imize interference to other users. The corresponding decision
rule should account for the dynamic nature of wireless channels
and the limited feedback rate on the forward link.

To account for the stochastic nature of the wireless channel,
we cast the power control problem in a Markov decision process
framework. Once this is established, we characterize the be-
havior of the optimal solution in the large system asymptote,
where the number of users and the spreading factor both go to
infinity with their ratio kept constant. We show that, under cer-
tain conditions, the multiuser power control problem effectively
decouples into a set of single-user power allocation problems.
An approximate solution for the single-user problem is then pro-
posed, and its performance is compared with that of the optimal
single-user solution.

The remainder of this paper is organized as follows. In
Section II, we introduce a mathematical model for the reverse
link and we discuss some of the issues involved in controlling a
cellular network. We pose the power control problem formally
in Section III. We present the structure of an optimal power
control policy in Section IV, and provide numerical examples
to illustrate the behavior of a controlled system in Section V.
We give our conclusions in Section VI.

II. SYSTEM MODEL

We begin with the development of a stochastic model for the
wireless system we wish to study. To facilitate tractability, we
would like the channel gains to be independent and identically
distributed (i.i.d.) random processes across users. Fortunately,
this is readily obtained by assuming that the users move around
the cell independently, a reasonable assumption. Hereafter, we
adopt this premise and embrace its simplicity. We discuss the
single-user channel first with the understanding that the mul-
tiuser system is an aggregate of independent single-user chan-
nels.

A. Single-User System

The system model we consider for the single-user wireless
connection pertains to the class of stationary discrete-time
Markov decision processes. We review briefly the specifics
of Markov decision processes and establish a convenient
notation for the power control problem at hand. We will show
in Example 1 how this general framework can accommodate
a Rayleigh-fading channel with a first-order autoregressive
autocorrelation function.

A Markov decision process is characterized by a control tran-
sition probability , which we define via

(2)

For all discrete time, the state is an element of a space,
while the action is an element of a space. The action is
further constrained to take values in a nonempty subset of

whenever . Our initial endeavor will be to define the
state space and theaction space for the control problem at
hand.

We construct the state spaceby describing each of its com-
ponents. Let be the set of all possible channel gains, which we
refer to as thechannel state space. We assume that is finite
and use

to denote its members. This assumption is not too restrictive
since successive refinements of the channel state space allow for
arbitrary precision. Furthermore, the use of numerical methods
in practical systems requires thatbe approximated by a finite
set. The corresponding wireless channel is a Markov sequence
with probability transition matrix

Similarly, we define to be the collection of all possible
power levels at which a mobile unit can communicate. Given
a limited feedback bandwidth, we feel justified in making the
transmit power space finite. We write the power levels of
as
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For channel gain and transmit power , the power
received at the base station, which we represent by, is given
by

The state space for the single-user system is the set product
of the channel space and the transmit power space

We represent the elements of by two dimensional vectors
of the form , where and . Also, we
employ the indexed notation for the state of the
system at discrete time. Appending the transmit power to the
channel state to create the system spaceallows us to consider
a large class of control policies. This will be made obvious in
what follows.

Turning to the construction of the action space, we note that
the transmit power level is our sole input to the system. We thus
make the obvious choice of equatingto the transmit power
space . This leads to the natural evolution equation

Hence, the controller decides at which level the mobile unit
transmits next. The channel probability transition matrix and the
control transition probability are related through the equation

(3)

where is the indicator function for event . Equation (3) as-
serts that the evolution of the channel gain is independent of the
power level at which the mobile unit is transmitting. In fact, the
state transition probability is obtained directly from the channel
transition probability provided that is equal to , the
power level specified by the controller; otherwise, the transition
probability is zero.

A more delicate problem lies with the selection of the con-
straint subsets . While choosing for all states

offers the greatest flexibility, it also requires more feed-
back bandwidth than, say, simple binary up/down control. For
binary power control, the family of action subsets corresponds
to

(4)

Fortunately, a specific choice of constraint subsets need not
be made for our later results to hold. We do however impose
some mild conditions on the collection . We assume
that depends exclusively on, the transmit power,
and we want any transmit power level to be reachable from
any other transmit power level within finite time.

Remark 1: In our definition, the wireless channel sequence
forms a Markov chain. We could have equivalently considered
a Markov- random sequence in which the state of the channel
at time depends on its previous values. However, for ease
of notation, we retain the use of a simple Markov chain with
the understanding that this work can readily be extended to the
more general channel model.

Example 1: To illustrate how the Markov decision frame-
work can accommodate familiar channel models, we consider a
Rayleigh-fading environment. We model the baseband channel
gain as a first-order autoregressive random process. The innova-
tion process is a sequence of i.i.d. zero-mean circularly complex
Gaussian random variables and the evolution of the baseband
complex channel follows a simple linear recursion. For complex
gain and autocorrelation coefficient, the evolution equation
is equal to

(5)

where is a sequence of i.i.d. zero-mean circularly complex
Gaussian random variables. The channel power gainis given
by

We observe that the gain sequence also forms a Markov
process. More precisely, conditioned on has a
noncentral chi-squared distribution with two degrees of freedom
and noncentrality parameter

It follows from (5) that the first-order statistic of is an
exponential distribution, the distribution corresponding to a
Rayleigh-fading model. To obtain a finite-state Markov chain
that mimics this channel, it suffices to partition the range of the
channel power gain and to derive a probability transition ma-
trix based on the corresponding noncentral chi-squared
distributions. The resulting system is inherently memoryless,
and successive refinements of the partition leads to arbitrary
precision in the stationary distribution of the Markov chain.

B. Multiuser System

Since we assume the channel gains of all the users to be i.i.d.
random processes, the multiuser system is characterized com-
pletely by the single-user model of Section II-A. Here, we make
this extension explicit and discuss some of the ideas involved in
lifting the single-user system to its multiuser counterpart.

For a system with users, the augmented system space
is the set product of copies of the single-user state space.
Its elements may be viewed as row vectors

where for . Similarly, the multiuser
action space is the set product of copies of the single-user
action space with controls

where for . The wireless chan-
nels being independent across users, the probability of an event
in the augmented system is given by the product of the proba-
bilities of its components. The control transition probability of
the augmented Markov chain is, therefore, obtained through the
formula

where is the single-user control transition probability of (3).
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Again, the action is constrained to take values in a
nonempty subset of . For the multiuser system, we
only admit actions of the form

(6)

Although the spaces and arise naturally as extensions
of the single-user model, condition (6) does not. Nonetheless,
we claim that all the constraint families of interest are of this
form and we make this condition a constituent of our multiuser
system model. The basic implication of condition (6) is that the
set of power levels at which a mobile unit can transmit next de-
pends exclusively on the power level at which it is currently
transmitting, i.e., the set of admissible power levels does not
depend on the transmit power of other users. This is quite rea-
sonable; for instance, in binary up/down power control, a mobile
unit can only update its power to a level adjacent to its current
transmit power level.

III. PROBLEM FORMULATION

For CDMA systems, power control on the reverse link breaks
down into two components, initialization and tracking. The
initialization procedure is straightforward. It involves taking
measurements of a pilot signal strength, and then determining
the initial transmission power level by inverting the estimated
channel (see, e.g., [12]). The second component of power
control, tracking, is more involved as it requires a sophisticated
channel model and a precise definition of quality of service.
In this paper, we focus entirely on the latter aspect of power
control.

For multicell environments, a power control algorithm in
which each cell operates independently is desirable. The alter-
native of coordinated multicell power control involves added
infrastructure for data transmission, computation complexity,
and delay. Thus, we would like the power of mobile users to
be controllable on a single-cell basis. In words, we want each
cell to form an autonomous entity, whereby the base station
controls the power of incell users based exclusively on local
measurements. Yet, we need to account for intercell interfer-
ence in our model. This leads us to the following assumption.

Assumption 1 (Single-Cell Framework):The interference
contribution from neighboring cells is a white Gaussian
process. This random process is independent of background
noise and its power spectral density is proportional to the power
spectral density of the background noise.

The Gaussian assumption is not surprising. Indeed, for large
cellular CDMA networks the output interference of a linear re-
ceiver can be well approximated by a Gaussian process [25]. In
contrast, the claim that the underlying Gaussian process has con-
stant power spectral density is harder to motivate. Typically, in-
tercell interference will be dominated by a few immediate neigh-
bors (e.g., six neighbors for hexagonal cells). Unless the inter-
ference power spectral density generated by these neighbors is
itself constant, there will be fluctuations in the interference level
seen by the base station of interest. To ensure coherence of our
framework, we will control the variance of the power spectral
density produced by each cell. This in turn will limit fluctua-
tions in interference level across cells, validating Assumption 1
over time frames of interest.

We cast the multiuser power control problem in a cost mini-
mization framework. From the discussion above, we gather that
the two elements to be minimized are the sum of the received
powers

and some cost function which provides a figure of merit for the
quality of a wireless connection. We now elaborate on this cost
function, which we denote by. The performance of a CDMA
communication system with a matched filter receiver front-end
can be expressed in terms of SIR at the output of the receiver.
This statement is certainly true whenever the system is sup-
porting a large number of users and the signal of each user is
decoded independently. In such a case, the output of the linear
receiver approaches a Gaussian random process and the associ-
ated SIR accurately predicts the bit-error rate at the output of the
decoder, which in turn yields a measure of user satisfaction. For
matched filter receivers, the SIR at the input of the decoder can
be computed from the received power and the total incell
interference . More specifically, we have

(7)

where is the spreading factor, is the power spectral den-
sity of the background noise, is the system bandwidth, and
is the proportionality constant corresponding to out-of-cell in-
terference as defined in Assumption 1. For received power
and total incell interference , the cost function is equal
to

(8)

Possible candidates formay be derived from the achievable
information rate for a given probability of error. However, we
emphasize that constant rate applications, which are the focus of
this paper, are not resource greedy in the sense that they do not
benefit much from exceedingly good connections. The perfor-
mance metric should then feature diminishing returns, for oth-
erwise the base station might try to deliver superfluous channel
capacity to incell users at the expense of excessive transmit en-
ergy and increased interference. Without specifically choosing
a performance metric, we assume thatbelongs to the class of
bounded continuous functions. Also, sinceis monotone in-
creasing in , the penalty function should be monotone de-
creasing in ; a property that we take for granted.

Remark 2: In the discussion above, performance is charac-
terize in terms of SIR. A more fundamental measure for the per-
formance of a communication system is the energy per informa-
tion bit divided by the total interference density at the input of
the receiver. The latter metric characterizes coded and uncoded
systems alike, and is given by

where is the bandwidth expansion factor (see, e.g., [26]). We
note that the results contained in this paper hold verbatim if we
replace by and by . However, since SIR is much more
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common to the communication literature, we retain its use in (7)
for the sake of clarity.

Let an admissiblestationary Markov policybe a mapping
from the state space to the action space such that

for all . An optimal power control al-
gorithm is an admissible policy that provides the best tradeoff
between and . In this work, we adopt a
Bayesian formulation for the tradeoff problem; Bayesian frame-
works are common in problems of optimal control [27], and de-
tection and estimation theory [28]. We pose the control problem
we wish to solve as follows.

Problem 1: Find an admissible Markov policy that mini-
mizes the cost function

(9)

over the set of all stationary Markov control policies, where
in (9) is a tradeoff parameter.

Under policy , the control system evolves according to the
transition probability

The tradeoff parametermay be interpreted as the relative cost
of excess power versus poor quality of service. We note that (9)
gives a per user figure of merit for system performance. A nor-
malized metric is convenient as it permits an easy comparison
of systems with different numbers of users.

IV. OPTIMAL POWER CONTROL POLICY

Most of the results we present in this section are asymptotic
in nature. We consider the limiting regime, where the number
of incell users goes to infinity. To accommodate this increasing
number of users, it is reasonable to assume that the system band-
width and the spreading factor are also increasing. We refer the
reader to Verdú and Shamai [29], and Tse and Hanly [30] for a
detailed discussion of large system analysis in context of mul-
tiuser CDMA systems.

Definition 1 (Large System Asymptote):Let the loading
factor be the ratio of the number of users to the spreading
factor

We define thelarge system asymptoteas the limiting regime
where the number of users and the spreading factor both go to
infinity with their ratio kept constant at.

From this point on, the reader should recognize that, in the
asymptotic regime, we first fix the loading factor and then let the
number of users go to infinity. In particular, the expression

implies that with fixed. Furthermore,
since we will be considering systems with varying number of
users, we note that the domain and the range of the policy
depend on the number of users. Throughout, we leave this
dependence implicit as this should cause no confusion.

In Section III, we expressed the importance of controlling
the variance of the total received power for the single-cell
framework to be valid. The underlying assumption is that, for
a given policy, the interference contribution from a given cell

to its neighbors is proportional to the total power received
from the incell users. To better illustrate the need to control
the variance of the received powers, we consider a cellular
environment with seven hexagonal cells: a central cell and six
peripheral neighbors. An approximate expression for the SIR
of the users in the central cell is given by

(10)

where is the distance between two neighboring base stations,
and is the total incell power received at the base station of
cell . The path loss model in (10) is , where
is some fixed constant. Clearly, a power control algorithm that
produces small variations in the also yields an interference
level which is approximately constant, as desired.

To control fluctuations in total received power, we restrict
the set of policies over which the minimization in Problem 1
is taken. We note that any stationary Markov policyinduces
a finite state Markov chain on the state space. With a fully
connected channel transition matrix, any nontrivial stationary
Markov policy induces a unique stationary distribution on .
For any such policy , the corresponding variance in received
power, , is well defined. Being primarily concerned with
large systems, and looking at (10), we gather that

is a sufficient condition for the single-cell framework to
hold in the large system asymptote of Definition 1. More specif-
ically, we say as whenever

as . We choose to restrict our search space to stationary
Markov policies for which

where is some (large) constant. This condition is sufficient
to ensure coherence of the single-cell framework in the limiting
regime of Definition 1.

Also, because we are interested in power control and not in
admission control, the power control policy we adopt should not
be selective across users. That is, the expected quality of ser-
vice should be identical for all users, as opposed to purposely
dropping one user to the benefit of others. We therefore further
restrict our search space to nonselective Markov policies. We
denote by the set of all nonselective stationary Markov poli-
cies for which

The modified power control problem can then be posed as
follows.

Problem 2: For each , find an admissible Markov policy
that minimizes the cost function

(11)

over the set of all stationary Markov control policies in.
Admittedly, finding an optimal solution to the

power control problem is no simple task. We therefore consider
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conditions under which the multiuser power control problem
decouples, and effectively converges to a collection of inde-
pendent single-user systems. Decoupling is beneficial since
it greatly reduces the dimension of the search space for an
optimal policy. Furthermore, it leads to the desirable distributed
property by which the transmit powers of the mobiles are
controlled independently. In particular, we characterize the
behavior of a cellular network in the large system asymptote of
Definition 1. First, we state a simple consequence of the fact
that we only admit policies in .

Corollary 1: Let be a sequence of admissible
policies such that is a policy for a system with users
then

(12)

Corollary 1 provides firm ground for Assumption 1. Indeed, this
corollary implies that also vanishes for sufficiently
large systems. We can, therefore, safely assume that the interfer-
ence contribution from other cells remains constant. To reduce
the complexity of the controlled system, we would like to find an
optimal single-user policy. That is, a policy in which decisions
concerning the control of a particular user is based strictly on
its transmit power , its channel gain, and the slowly varying
total received energy . For systems with more than one user,
a single-user policy could be far from optimal. Fortunately, this
is not the case for sufficiently large systems, since for such sys-
tems there exist single-user policies which are-optimal as seen
in the following result whose proof is given in the Appendix.

Theorem 1: Suppose we fix the loading factor. Given any
, there exists an integer such that implies the

existence of a stationary Markov policyfor which

(13)

where is an optimal policy, is a randomized single-user
policy of the form

and is an admissible control policy for the single-user Markov
decision process described at the beginning of Section II.

This theorem asserts that for large systems we can trade the
very complex multiuser policy for a simple, easy to imple-
ment randomized single-user policywithout compromising
system performance. Because of the complexity of multiuser
policies, it is not possible to determine numerically how large

should be for this asymptotic behavior to come into play.
However, the convergence of seems to depend on
the ability of the power control algorithm to even out variations
in received power. In the performance analysis of linear mul-
tiuser detectors for CDMA systems, it has been observed that
the large system asymptotics for the SIR are valid for very mod-
erate values of and of the order of 50 (see, e.g., [29], [30]).
Based on these results, we expect the performance of the optimal
single-user policy to match that of the optimal multiuser policy
very rapidly as increases.

In view of Proposition 1, and for large systems, there is no loss
in optimality in considering single-user policies. We henceforth

focus on such policies for which users are controlled indepen-
dently. Then, the power control algorithm is a state feedback law
whose sole input is the current state of the user of interest. It fol-
lows from the law of large numbers that for single-user policies,
variance vanishes in the large system asymptote. In-
cidentally, also vanishes and the interference contri-
bution from all incell users can be assumed constant. Thus, un-
like in the case of centralized policies, we need not worry about
controlling variations in intercell interference. Furthermore, be-
cause the normalized variance goes to zero for large
systems, we can assume that the incell interference power re-
mains approximately constant over time. For convenience, we
denote this constant incell interference power spectral density
by .

A. Single-User Policy

The single-user policy of Proposition 1 is a randomized
policy. That is, for any given state , the action ap-
plied by the controller is selected at random according to a state
dependent probability distribution on the action space . In
practical systems, however, a deterministic control policy may
be more appropriate. Indeed the complexity of a randomized
single-user policy, or the complexity of a multiuser policy
for that matter, may be overwhelming. Optimal deterministic
policies can be computed efficiently using standard tools from
dynamic programming such as value iteration, policy iteration,
or linear programming. The reader is referred to Bertsekas
[31] for an in depth treatment of dynamic programming and
optimal control. Here, we assume that the reader is familiar
with dynamic programming and we proceed to cast the power
control problem in a dynamic programming framework. We
write the single-user cost per stage function as

and we evaluate Markov policies based upon the average cost
criterion

(14)

where the single-user system evolves according to the Markov
transition probability

This is a standard formulation in optimal control and it falls
in the class of infinite horizon average cost problems. We
note that for any single-user policy of the form

by ergodicity of the finite state system. The average cost of (14)
is then equivalent to the multiuser average cost of (9) for any
such single-user policy.
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The discussion above reveals the interplay between three fun-
damental quantities: the expected quality of service , the
interference to other users , and the number of incell users

For instance, for a fixed interference power spectral density
, the total number of incell users decreases as users demand

better connections. For a specific cellular system, the relation
between , , and can be made explicit by repet-
itively solving the dynamic program defined above for various
values of and . In the next section, we study how this frame-
work can be employed to improve the performance of the power
control loop in the IS-95 standards [32].

V. NUMERICAL EXAMPLE

In this section, we illustrate how dynamic programming ap-
plies to power control. The channel power gain of a typical wire-
less connection varies as the mobile user travels around the cell.
Such variations are known to happen on two different scales.
Shadow fading is a slowly varying process generated by changes
in the environment of the mobile. These changes occur on the
scale of distance between objects (such as buildings) in the en-
vironment. The second scale of variations, multipath fading,
is much smaller as it happens over distances of the order of a
wavelength of the carrier. At vehicular speed (velocity less than
100 km/h), the mean path gain and the shadow fading process
remain essentially constant over multiple control periods. Mul-
tipath variations however do not. In what follows, we assume
that the mean path gain and the shadow fading process are ap-
proximately constant over time frames of interest. Accordingly,
variations in channel gain are entirely due to multipath fading.

To model multipath fading, we revisit the wireless channel
introduced in Example 1. More specifically, we consider a
first-order autoregressive random process with complex gain

and autocorrelation coefficient, as described in (5). This
channel model corresponds to the standard Rayleigh-fading
environment [33] with an autoregressive autocorrelation
structure. The autocorrelation coefficientmay depend on the
speed of the mobile, the nature of the environment, and the
wavelength of the carrier. If we consider the situation where
the propagation environment is such that power is received
uniformly from all directions, the autocorrelation function of
the channel can be modeled as a Bessel function of the first
kind of order zero [34], i.e.,

where denotes the complex conjugate of. In general, the
channel will be more strongly correlated if the power is not re-
ceived uniformly from all directions. In our numerical analysis,
we consider correlation coefficients of the form

For a carrier frequency of 900 MHz and a control period of
1.25 ms, it is sufficient to consider correlation coefficients from
0.8 to 1 to cover the entire range of reasonable vehicular speeds.

TABLE I
CHANNEL PARAMETERS

The parameter values for the wireless channel used in our nu-
merical results appear in Table I.

In practical systems, the feedback bit rate dedicated to
power control information is fixed (e.g., 800 bps for the IS-95
standard [32]); as a consequence, simpler control signals
imply more frequent power updates. Having stressed in the
introduction how critical a short control period is to high
capacity cellular networks, we expect simpler algorithms with
frequent updates to outperform more complex power control
algorithms. We first study the class of binary up/down power
control algorithms. For any given feedback bit rate, these
algorithms yield the shortest possible control period. Moreover,
they are widely employed in IS-95 based CDMA systems
[32]. When proportional increments are used, the family of
constrained subsets corresponding to binary control
is as described in (4). Furthermore, at each control instant a
mobile can either increase or decrease its transmit power by an
amount proportional to its current power level

where is a designated constant; the IS-95 standard suggests
a value of . The numerical results are obtained for
a finite channel state space, and the system parameters for our
simulations are found in Table II. For a given interference power
spectral density , the SIR at the output of the matched filter
can be expressed in terms of the channel gainand the transmit
power as

The individual cost per stage function was originally introduced
in Section III. In our analysis, we take the following cost func-
tion:

(15)

We put an upper bound on the penaltywith the understanding
that below a certain SIR, the decoder outputs incoherent data.
The cost as a function of SIR appears in Fig. 1.

The optimal stationary control policy can be obtained by di-
rect application of either the successive approximation method
or the policy iteration algorithm. Both techniques are standard
dynamic programming tools. In Fig. 2, we show the optimal
decision policy as a function of transmit powerand channel
gain ; the correlation coefficient of the simulated channel is

. Unfortunately, the optimal policy has no simple struc-
ture and is, therefore, difficult to implement in practical systems.
Computing the solution to the dynamic program in real time



556 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 2, NO. 3, MAY 2003

TABLE II
SYSTEM PARAMETERS

Fig. 1. Plot of the cost metricg as a function of SIR. A low SIR induces a high
penalty, while a sufficiently high SIR yields no cost.

Fig. 2. Graphical display of the optimal binary single-user power control
policy. As the link quality improves, the mobile unit reduces its power
consumption.

would be too time consuming. To employ this control policy
in a real cellular system, the decision rule would have to be
stored as a look-up table. Although storing the control policy
for one specific channel profile can be achieved rather easily,
doing so for every possible combination of system parameters
is again impractical. We therefore explore simpler alternatives
to the optimal single-user power control algorithm, using the
optimal policy as a bench mark for performance.

One obvious way to reduce the complexity of the power con-
trol algorithm is to implement a standard threshold policy, much
like the policies employed in IS-95. When the SIR exceeds the
set threshold, the mobile unit is instructed to power down; oth-
erwise, the unit powers up. The particular threshold used in the
algorithm may depend on the estimated channel parameters.

Fig. 3. Expected cost of threshold policies for various thresholds. The
performance of the best threshold policy comes close to that of the optimal
single-user policy.

Fig. 4. Normalized performance of a threshold policy designed for a
correlation coefficient of� = 0:95. The performance loss associated with this
suboptimal scheme is minimal with a degradation of at most 10%.

As shown in Fig. 3, the performance of the best SIR threshold
policy comes very close to that of the optimal single-user policy.
An SIR threshold type of policy also seems very robust. In
Fig. 4, we show the performance of a threshold policy designed
for , and employed over channels with various cor-
relation coefficients. The performance metric is normalized in
that we present the ratio of the optimal cost over the cost in-
curred by the threshold policy. Performance degradation is at
most 10%. Moreover, the worst performance occurs when the
channel is highly correlated, and thus easily predictable. These
results motivate the use of an SIR based threshold policy. The
dynamic programming framework can then be used to compute
the best possible threshold for any given system parameters. Al-
ternatively, the threshold can be varied dynamically according
to the current channel profile of the corresponding user.

Before we conclude this section, we provide a brief compar-
ison of algorithms with different complexity. We mentioned pre-
viously how we expect simpler algorithms with frequent updates
to outperform more complex power control algorithms. This in-
tuition is confirmed numerically for the cost function and the
wireless channel introduced in this section. Fig. 5 shows the
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Fig. 5. Performance of algorithms with various complexity. For a fixed
feedback bit rate, the optimal binary algorithms outperforms the more complex
schemes.

performance of algorithms with different complexity. We em-
phasize that the three power control policies are compared for
a fixed feedback bit rate. Thus, the binary policy adjusts the
transmit power of the mobiles twice as often as thefour-level up-
datespolicy, and three times as often as theeight-level updates
policy. Furthermore, to insure a fair comparison, we tailored the
policies to the wireless channel. That is, for any particular cor-
relation coefficient, we compare the three best policies within
their respective classes. We can see that the binary up/down al-
gorithm outperforms more complex algorithms, corroborating
our initial intuition and offering support for our detailed study
of binary up/down power control algorithms as opposed to more
complex schemes.

VI. DISCUSSION ANDCONCLUSION

We presented a new approach to the design of power con-
trol algorithms for cellular CDMA systems. This technique is
based on a cost minimization framework and incorporates a sto-
chastic dynamic channel model as part of the problem defini-
tion. The stochastic channel model allows for the control policy
to take into account fast variations in channel gain. The frame-
work of dynamic programming was used to characterize the op-
timal power control algorithm. For large systems, the multiuser
solution was shown to decouple, and effectively converge to a
single-user solution in which users are controlled independently.

We have also shown how the methodology derived in this
paper can be applied to a Rayleigh-fading channel model with a
first-order autoregressive autocorrelation function. In a numer-
ical study, the performance of a simple threshold policy was
compared with that of the optimal single-user policy. It was
found that the performance loss in adopting a threshold policy is
negligible, offering support to the threshold decision rules em-
ployed in IS-95 based CDMA systems.

In formulating the power control problem, one could be
tempted to minimize the sum of the transmit powers

as well as the sum of the received powers, leading to an alter-
native cost function of the form

(16)

However, a wireless connection may be subject to very large
fluctuations in channel gain and the cost function of (16) would
lead to the undesirable behavior, where users are dropped very
rapidly to the benefit of a smaller average transmit power. Effec-
tively, this is equivalent to limiting the coverage of a base sta-
tion. To reduce average transmit power, one should consider de-
creasing the radius of each cell rather than reducing the quality
of service for users around the cell boundary. More base sta-
tions yield higher capacity, better coverage, and lower average
transmit power for mobile users.

Avenues for further research include extending this frame-
work to multiclass networks, where both voice users and data
users must coexist. Furthermore, the performance of binary
up/down control should be compared against more complex
control schemes, such as iterativeschemes proposed in the power
control literature. A more accurate analysis would also include
admission control and handoff in the problem formulation.

APPENDIX

Theorem 1: Suppose we fix the loading factor. Given any
, there exists an integer such that implies the

existence of a stationary Markov policyfor which

(17)

where is an optimal policy, is a randomized single-user
policy of the form

and is an admissible control policy for the single-user Markov
decision process described at the beginning of Section II.

Proof: The essence of the proof is to construct a
single-user policy whose performance comes arbitrarily close
to being optimal. First, we derive a bound for variations in the
cost function while substituting for in .

Let be given. The performance metricis bounded,
continuous, and monotone decreasing; it is therefore uniformly
continuous. It follows that the function is uniformly
continuous in for any . Then, there exits

such that implies

(18)

for all , . Assume now that is
given. From Corollary 1, and for a fix loading factor, we have

We recall from Definition 1 that, for a fixed loading factor, the
expression implies since is fixed.
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Then, there exists an integer such that for a sequence of
optimal policies and for all

where . Under , , the Chebyshev
inequality asserts that

(19)

Consequently, for policy with , we obtain

given

given

where follows from (18), under the assumption that
, and follows from (19). Thus, for ,

the optimal cost function satisfies

(20)

Next, we construct a single-user policysuch that
. Fix integer with . Define the randomized

policy , where operates on one user by

Also, define the associated single-user policyby

By construction and since is nonselective, we obtain
and

(21)

The last step of the proof is to relate the left-hand side of
(21) to . Because the transmit power spaceis finite, the
variance of the received power is uniformly bounded across
users. Since users are controlled independently in a single-user
policy, uniform boundedness implies

Consequently, there exists an integer such that
implies

for any single-user policy. Now, we can use an argument anal-
ogous to that used to produce (20) to show that for

(22)

By (20)–(22), we conclude that, for ,
there exists a single-user policysuch that

Noting that is arbitrary, this completes the proof of the
theorem.
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