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Abstract—The control of transmit power has been recognized sociated with this paradigm. We therefore center our attention

as an essential requirement in the design of cellular code-division on power control algorithms that attempt to provide users with
multiple-access (CDMA) systems. Indeed, power control allows 5 \;niform quality of service over time.

for mobile users to share radio resources equitably and efficiently . .
in a multicell environment. Much of the work on power control Previous work on power control for cellular systems includes

for CDMA systems found in the literature assumes a quasi-static the study of optimal transmission strategies [1]-{7], as well as
channel model, i.e., the channel gains of the users are assumed t¢he design of practical power control policies [8], [9]. Power
be constant over a sufficiently long period of time for the control control has been shown to increase the bandwidth efficiency
algorithm to converge. In this paper, the design of dynamic power and the capacity of both channelized cellular systems [10], [11]
control algorithms for CDMA systems is considered without the 5.4 cellular CDMA systems [12]-[14]. Early analytical work

quasi-static channel restriction. The design problem is posed as a o L7
tradeoff between the desire for users to maximize their individual [2], [11], [15] has focused on maximizing the minimum user

quality of service and the need to minimize interference to other Signal-to-interference ratio (SIR), an approach known as SIR
users. The dynamic nature of the wireless channel for mobile users balancing. The problem of power control has subsequently been
is incorporated in the problem definition. Based on a cost mini- redefined as minimizing the total transmitted uplink energy sub-
mization framework, an optimal multiuser solution is derived. The  ject to maintaining the SIR of each user above an individual
multiuser solution is shown to decouple, and effectively converge, y, eshold value [3], [5]. The latter formulation better incorpo-
to a single-user solution in the large system asymptote, where the . ' . . o -
number of users and the spreading factor both go to infinity with rates the notion of qual_lty Of service and it is su_|f[abl_e for het-_
their ratio kept constant. In a numerical study, the performance €rogeneous systems, since it allows for the specification of indi-
of a simple threshold policy is shown to be near that of the optimal vidual link requirements. Distributed power control algorithms
single-user policy. This offers support to the threshold decision have been studied in a wide range of contexts [1], [4], [6], [8].
rules that are employed in current cellular CDMA systems. Their implementation usually entails iterative methods. An el-
Index Terms—Code-division multiple access (CDMA), dynamic €gant framework which provides insightful results about itera-
programming, optimal control, power control, spread spectrum, tive power control algorithms for quasi-static channels has been
wireless communication. proposed by Yates [5]. Integrated power control and base sta-
tion assignment has been investigated by Hanly [16], and Yates
|. INTRODUCTION and Huang [17]. Hanly [7_] has also addressed the joint topic of
o ) power control and capacity for spread spectrum systems.
N A CELLULAR code-division multiple-access (CDMA) = \ost of the work found in the literature on this topic
environment, a set of mobile users shares a common ba[@]'—[ll], [15], [17]-[20] has been restricted to quasi-static
width allocation. The burden of allocating radio resources edqiihannel models, i.e., models in which the channel gain of every
tably on the reverse link is handed over to a power control alggser is assumed to remain approximately constant over suffi-
rithm. In this paper, we consider the control of transmit poWfiently long periods of time. The performance results obtained
for CDMA systems in the context of constant rate applicationgnder this assumption will be valid so long as the reaction
By constant rate applications, we refer to real-time applicatiofge of the power control algorithm is small compared with
with stringent delay constraints and fixed data rate requiremeg{g coherence time of the underlying wireless channel. In other
such as cellular telephony. For any such application, an appygsrds, the transmit power of each user is implicitly assumed
priate W_|reless conr_lectlon must be maln_talned at all times. Tﬂ?converge to its optimal level before any significant change
alternative of buffering data and scheduling users based on thgityrs in the channel state. Unfortunately, this assumption may
link quality is not acceptable because of the inherent delay ggst necessarily hold for practical systems [18].

A second set of papers on power control [21]-[24] recognizes

) ] ] ) the random nature of the wireless link. Yet, in these papers, the
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The need to incorporate the stochastic, dynamic nature of the II. SYSTEM MODEL
wireless channel into the power control problem formulation
has been identified clearly in previous work [18], [24]. In this
paper, we follow this avenue of research and model the wirele¥
channel as a stochastic process. Furthermore, we acknowle

that the controller has to select an appropriate transmission level™, dilv obtained b ing that th d
at the beginning of the control period and that it must therefo IS Is readily obtained by assuming that the users move aroun

rely on the past values of the channel state to predict the currgaq cell mdepen@ently, a reasonaple assumption. ngeafter, we
one. This contrasts with the quasi-static power control proble opt this premise and e”!brace s 3|mpI|C|ty. We discuss the
formulation, or “snap-shot” approach, where the channel gain%pgle—user ch_annel first with the_understandlng that the mul-
every user is assumed to remain constant. More specifically, {l{ser system Is an aggregate of independent single-user chan-

include a stochastic channel model as part of the problem ddif's:

nition. This strategy enables us to account for channel dynamics

in the derivation of an optimal solution rather than relying pri&- Single-User System

marily on the algorithm structure for adaptation. We emphasizeThe system model we consider for the single-user wireless
however that an efficient power control algorithm can only bgonnection pertains to the class of stationary discrete-time
derived if the time over which the channel gain is highly cofyarkov decision processes. We review briefly the specifics
related is much greater than the time period between succgs-Markov decision processes and establish a convenient
sive control signals. This leads us to define a system paramefgfiation for the power control problem at hand. We will show
called the control periody,, as the reciprocal of the control ratej, Example 1 how this general framework can accommodate

We begin with the development of a stochastic model for the
'geless system we wish to study. To facilitate tractability, we
Id like the channel gains to be independent and identically
tributed (i.i.d.) random processes across users. Fortunately,

far i€, a Rayleigh-fading channel with a first-order autoregressive
1 autocorrelation function.
T, = f_ (1) A Markov decision process is characterized by a control tran-

sition probability P,, which we define via
The smaller the value df,, the more rapidly the power control

algorithm can adapt to a change in channel gain. In addition to a
small control period, a realistic control policy must account for

physical constraints present in the system. One such restriction
is a limited data rate dedicated to power control on the forwaEd
link. The need to adapt promptly to channel variations togethe“;’1
with a constrained feedback data rate point to power control

gorithms that use simple, frequent control signals. In this wor

our goal will be to design a pragmatic uplink power control al- .
gorithm in context of constant rate applications. We pose the égr:(cei spacet’ and theaction spaced for the control problem at

sign problem as a tradeoff between the desire for users to max- - .
9nbp e construct the state spa&eby describing each of its com-

imize their individual quality of service and the need to min- ts. LeS be th tof all ible ch | qai hich
imize interference to other users. The corresponding decisfof€Nts: -eb be the SEL ot all possibie channel gains, which we
er to as thehannel state spac&\Ve assume that is finite

rule should account for the dynamic nature of wireless chann&F

and the limited feedback rate on the forward link. nd use
To account for the stochastic nature of the wireless channel,

we cast the power control problem in a Markov decision process

framework. Once this is established, we characterize the be- ] ) o o

havior of the optimal solution in the large system asymptotg,’ denote its memb_ers. This assumption is not too restrictive

where the number of users and the spreading factor both gé%(_:e successive refinements of the channel state space allow for

infinity with their ratio kept constant. We show that, under ce@'Pitrary precision. Furthermore, the use of numerical methods

tain conditions, the multiuser power control problem effectivel{? Practical systems requires thébe approximated by a finite

decouples into a set of single-user power allocation problenf§l- The corresponding wireless channel is a Markov sequence

An approximate solution for the single-user problem is then priith probability transition matrix)

posed, and its performance is compared with that of the optimal A
single-user solution. Q(s,2) = Prob {si11 = z|s: = s}.

The remainder of this paper is organized as follows. In
Section II, we introduce a mathematical model for the reverseSimilarly, we define? to be the collection of all possible
link and we discuss some of the issues involved in controllinge@wer levels at which a mobile unit can communicate. Given
cellular network. We pose the power control problem formallg limited feedback bandwidth, we feel justified in making the
in Section 1ll. We present the structure of an optimal powdransmit power spac® finite. We write the power levels dP
control policy in Section IV, and provide numerical example8s
to illustrate the behavior of a controlled system in Section V.
We give our conclusions in Section VI. 0<p® < p® < ... < plPh,

P,(z,y) 2 Prob {Zt41 =y|ar =z, ar = a}
=Prob{z; =y|zo =2, ap = a}. (2)

r all discrete time, the state; is an element of a spack,

ile the actiornu, is an element of a spacé. The actioru; is

rther constrained to take values in a nonempty sudgej of
wheneverr; = z. Our initial endeavor will be to define the

0<sM <@ < ... < 508D
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For channel gain € S and transmit powep € P, the power  Example 1: To illustrate how the Markov decision frame-
received at the base station, which we represent, by given work can accommodate familiar channel models, we consider a
by Rayleigh-fading environment. We model the baseband channel
gain as afirst-order autoregressive random process. The innova-
T = Sp. tion process is a sequence of i.i.d. zero-mean circularly complex
) . Gaussian random variables and the evolution of the baseband
The state spacd for the single-user system is the set produclomplex channel follows a simple linear recursion. For complex
of the channel space and the transmit power space gaine and autocorrelation coefficiept the evolution equation

X=SxP. is equal to

We represent the elements &f by two dimensional vectors crr=pertw =012, ... ®)

of the formz = (s, p), wheres € S andp € P. Also, we where{w,} is a sequence of i.i.d. zero-mean circularly complex
employ the indexed notatiam, = (s¢, p¢) for the state of the Gaussian random variables. The channel power gisrgiven
system at discrete time Appending the transmit power to theby
channel state to create the system spi@lows us to consider

icies. This wi ous | st = lerf? = (Re(er))” + (Im(er))?
a large class of control policies. This will be made obvious in ¢ t t t)) -

what follows. ;
. ) ) We observe that the gain sequer{ee} also forms a Markov
Turning to the construction of the action spateave note that process. More precisely, conditioned on{s,; r < t} has a

the transmit power level is our sole input to the system. We thi§central chi-squared distribution with two degrees of freedom
make the o_bwous choice of equatlnfgto_ the trans_mlt POWEr and noncentrality parameter
spaceP. This leads to the natural evolution equation
8 = p* si_1.
Pn+1 = Qn- . .. .
It follows from (5) that the first-order statistic of; is an
Hence, the controller decides at which level the mobile urékponential distribution, the distribution corresponding to a
transmits next. The channel probability transition matrix and thiayleigh-fading model. To obtain a finite-state Markov chain
control transition probability are related through the equationthat mimics this channel, it suffices to partition the range of the
channel power gaim and to derive a probability transition ma-
Pa((s, ), (2, @) = Q(s, 2)lg=a) () trix Q(s, =) based on the corresponding noncentral chi-squared
wherell 5 is the indicator function for everi. Equation (3) as- distributions. The resulting system is inherently memoryless,
serts that the evolution of the channel gain is independent of ffed successive refinements of the partition leads to arbitrary
power level at which the mobile unit is transmitting. In fact, th@recision in the stationary distribution of the Markov chain.
state transition probability is obtained directly from the chann
transition probabilityQ(s, z) provided thay is equal toa, the
power level specified by the controller; otherwise, the transition Since we assume the channel gains of all the users to be i.i.d.
probability is zero. random processes, the multiuser system is characterized com-
A more delicate problem lies with the selection of the corpletely by the single-user model of Section II-A. Here, we make
straint subset§A(z)}. While choosingA(z) = A for all states this extension explicit and discuss some of the ideas involved in
= € X offers the greatest flexibility, it also requires more feedifting the single-user system to its multiuser counterpart.
back bandwidth than, say, simple binary up/down control. For For a system wittK users, the augmented system space
binary power control, the family of action subsets corresponifsthe set product ok’ copies of the single-user state spéce
to Its elements may be viewed as row vectors

Abin(x) :-Abin ((87 p(]))> X = ($(1)7 $(2)7 st IL’(K))
wherex(k) € X fork =1, 2, ..., K. Similarly, the multiuser

(4)  action spaced¥ is the set product ok copies of the single-user

. : . ion with control
Fortunately, a specific choice of constraint subsets need r?(():%o spaced with controls

be made for our later results to hold. We do however impose a=(a(l), a(2), ..., a(K))
some mild conditions on the collectiof4(z)}. We assume wherea(k) € Afork = 1,2, ..., K. The wireless chan-

that A((s, p)) depends exclusively op), the transmit power, ,o|q heing independent across users, the probability of an event
and we want any transmit povv(%r leyél) to be reachable from ;e augmented system is given by the product of the proba-
any other transmit power level*’ within finite time. bilities of its components. The control transition probability of

Remark 1:1n our Qefinition, the Wireless_channel Sequenc, o augmented Markov chain is, therefore, obtained through the
forms a Markov chain. We could have equivalently con3|derqgrmula

a Markov+sn random sequence in which the state of the channel

at timet depends on itsn previous values. However, for ease K

of notation, we retain the use of a simple Markov chain with Pa(x,y) = H Pary (x(k), y(k))

the understanding that this work can readily be extended to the k=1

more general channel model. whereP, is the single-user control transition probability of (3).

[
E. Multiuser System

_ {p<max{1,j—1}>7 plmin{i+1, |7>|}>} ,
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Again, the actiona is constrained to take values in a We cast the multiuser power control problem in a cost mini-
nonempty subsetl (x) of AX. For the multiuser system, we mization framework. From the discussion above, we gather that
only admit actions of the form the two elements to be minimized are the sum of the received

AR (x) = A(z(1)) x A(z(2)) x --- x A(z(K)). (6) powers

Although the space&’™ and A% arise naturally as extensions K

of the single-user model, condition (6) does not. Nonetheless, o Z r(k)

we claim that all the constraint families of interest are of this k=1

form and we make this condition a constituent of our multius@nhd some cost function which provides a figure of merit for the
system model. The basic implication of condition (6) is that thguality of a wireless connection. We now elaborate on this cost
set of power levels at which a mobile unit can transmit next désnction, which we denote by. The performance of a CDMA
pends exclusively on the power level at which it is currentlgommunication system with a matched filter receiver front-end
transmitting, i.e., the set of admissible power levels does nedn be expressed in terms of SIR at the output of the receiver.
depend on the transmit power of other users. This is quite réfhis statement is certainly true whenever the system is sup-
sonable; for instance, in binary up/down power control, a mobifrting a large number of users and the signal of each user is
unit can only update its power to a level adjacent to its curretiécoded independently. In such a case, the output of the linear

1l

transmit power level. receiver approaches a Gaussian random process and the associ-
ated SIR accurately predicts the bit-error rate at the output of the
Ill. PROBLEM FORMULATION decoder, which in turn yields a measure of user satisfaction. For

For CDMA systems, power control on the reverse link breal@amhed filter receivers, the SIR at the input of the decoder can
down into two components, initialization and tracking. Th8€ computed from the received powet;) and the total incell
initialization procedure is straightforward. It involves takingerference ., r(¢) = S —r(k). More specifically, we have
measurements of a pilot signal strength, and then determining k) — Nr(k) -
the initial transmission power level by inverting the estimated (k) = (14 a)NoW + S — r(k) 7

channel (see, e.g., [12]). The second component of pOW%RereN is the spreading factory, is the power spectral den-

control, tracking, is more involved as it requires a sophisticatg y of the background nois# is the system bandwidth, anad
channel model and a precise definition of quality of servic% :

In this paper, we focus entirely on the latter aspect of POWErterence as defined in Assumption 1. For received pawer

control. . . ) . and total incell interferenc& —r(k), the cost functiory is equal
For multicell environments, a power control algorithm i

which each cell operates independently is desirable. The alter-
native of coordinated multicell power control involves added g(v(k)) = g ( Nr(k) ) . @)
infrastructure for data transmission, computation complexity, (14 a)NoW + 8 — (k)

and delay. Thus, we V.VOUId like the' power of mabile users Bossible candidates fgrmay be derived from the achievable
be controllable on a single-cell b_a5|s. In words, we want €3ftitormation rate for a given probability of error. However, we
cell to form an autonqmous entity, whereby the_ base statig phasize that constant rate applications, which are the focus of
controls the power of incell users based exclluswely on lo is paper, are not resource greedy in the sense that they do not
meas_urements. Yet, we need to account forl intercell mt?rf%r'nefit much from exceedingly good connections. The perfor-
encein our_model. T_h|s leads us to the foIIowmg assumpliony o nce metrig should then feature diminishing returns, for oth-
As_sum_pnon 1 (Sm_gle-Ce_II Framewqu]’:he |r_1terference_ erwise the base station might try to deliver superfluous channel
contribution from neighboring cells is a white Gauss'aEagacity to incell users at the expense of excessive transmit en-

the proportionality constant corresponding to out-of-cell in-

ProCess. Th's random process IS mdependgnt of backgro y and increased interference. Without specifically choosing
noise and its power spectral density is proportional to the POWEHa formance metric, we assume thdtelongs to the class of

spectral density of the background noise. bounded continuous functions. Also, singes monotone in-

The Gaussian assumption is not surprising. Indeed, for Iar@r%asing in-, the penalty functiory should be monotone de-

cellular CDMA networks the output interference of a linear res easing in: a property that we take for granted.

ceiver can be well approximated by a Gaussian process [25]. "Remark 2: In the discussion above performance is charac-
contrast, the claim that the underlying Gaussian process has Gan: '

I ) : ze interms of SIR. A more fundamental measure for the per-
stant power spectral density is harder to motivate. Typically, IBsrmance of a communication system is the energy per informa-

Lercell mterfgenqe ;’]Vb'" befdorrr:lnated bﬁafiwmbmled'attehne.'%lﬁbn bit divided by the total interference density at the input of
ors (e.g., six neighbors for exagonal ce 5). Unless € INGo receiver. The latter metric characterizes coded and uncoded
ference power spectral density generated by these nelghbong\(gt ; i
) . L . ems alike, and is given by
itself constant, there will be fluctuations in the interference leve

seen by the base station of interest. To ensure coherence of our (k) = Qr(k)
framework, we will control the variance of the power spectral (L+ a)NoW + S —r(k)

density produced by each cell. This in turn will limit fluctua-wheref2 is the bandwidth expansion factor (see, e.g., [26]). We
tions in interference level across cells, validating Assumptionrbte that the results contained in this paper hold verbatim if we

over time frames of interest. replaceN by Q and+y by 4. However, since SIR is much more
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common to the communication literature, we retain its use in () its neighbors is proportional to the total power received
for the sake of clarity. from the incell users. To better illustrate the need to control

Let an admissiblestationary Markov policybe a mapping the variance of the received powers, we consider a cellular
u from the state spac& ™ to the action spacel’ such that environment with seven hexagonal cells: a central cell and six
u(x) € AX(x) for all x € X%. An optimal power control al- peripheral neighbors. An approximate expression for the SIR
gorithm is an admissible poligy that provides the best tradeoffof the users in the central cell is given by
betweerE[S] andE [Eszl g (y(k;))]. In this work, we adopt a Nr(k)

. . . . y(k) = (10)

Bayesian formulation for the tradeoff problem; Bayesian frame- 6 )
works are common in problems of optimal control [27], and de- NoW +1D=* £ SO + 8§ —r(k)

. . . j=1
tecuo.n and estimation theory [28]. We pose the control prObIevr\T/hereD is the distance between two neighboring base stations,
we wish to solve as follows.

) j i i i
Problem 1: Find an admissible Markov policy that mini- andS is the total incell power recgved at the_b4ase station of
. X cell 5. The path loss model in (10) 5(d) = ld—*, wherel
mizes the cost function . ) .

K is some fixed constant. Clearly, a power control algorithm that
Z 9 (v(k)) ) produces small variations in tt$7) also yields an interference
Pt level which is approximately constant, as desired.

. . To control fluctuations in total received power, we restrict
over the set of all stationary Markov control policies, whare - . R
the set of policies over which the minimization in Problem 1

in (9) is a tradeoff parameter. . . _
. . is taken. We note that any stationary Markov policynduces
Under policyu, the control system evolves according to the .. . . :
. - a finite state Markov chain on the state space. With a fully
transition probability . . - .
connected channel transition matrix, any nontrivial stationary

Pu(x,y) =Prob{xiy1 =y |x; =%, a = p(x)}. Markov policy induces a unique stationary distribution6ft .
The tradeoff parameter may be interpreted as the relative costor any such policy, the corresponding variance in received
of excess power versus poor quality of service. We note that wer, Var[S], is well defl_ned. Being primarily concerned with
gives a per user figure of merit for system performance. A nggfge systems, and looking at (10), we gather fHat[S] =

malized metric is convenient as it permits an easy comparis¢ids -) iS @ sufficient condition for the single-cell framework to
of systems with different numbers of users. hold in the large system asymptote of Definition 1. More specif-

ically, we sayVar[S] = o(K?) asK — oo whenever

J(p) 2 % (/\E[S] +E

IV. OPTIMAL POWER CONTROL PoLICY [ S ]
Var 7 — 0
Most of the results we present in this section are asymptotic _ _
in nature. We consider the limiting regime, where the numb@K — oo. We choose to restrict our search space to stationary
of incell users goes to infinity. To accommodate this increasifgarkov policies for which
number of users, itis reasonable to assume that the system band- Var[S] < KB
width and the spreading factor are also increasing. We referv\}ﬁereB is some (large) constant. This condition is sufficient
reader to Verdu and Shamai [29], and Tse and Hanly [30] fortaensure coherence ?Jf the sin Ie—.cell framework in the limitin
detailed discussion of large system analysis in context of mut-© o 9 9
: regime of Definition 1.
tiuser CDMA systems. . . .
L . Also, because we are interested in power control and not in
Definition 1 (Large System Asymptotebet the loading dmission control, the power control policy we adopt should not
factor b be the ratio of the number of users to the spreadi . ' P 01 policy ptsh
selective across users. That is, the expected quality of ser-

factor ) . )
vice should be identical for all users, as opposed to purposely
p2 5 dropping one user to the benefit of others. We therefore further
N restrict our search space to nonselective Markov policies. We

We define thelarge system asymptotes the limiting regime denote byil the set of all nonselective stationary Markov poli-
where the number of users and the spreading factor both g¢t@s for whichVar[S] < KB
infinity with their ratio kept constant dt _ A

From this point on, the reader should recognize that, inthe 1T = {,L; Elg(v(k))] = J(p) — 7 E[S]Vk } .
asymptotic regime, we first fix the loading factor and then let the Var[S] < KB
number of users go to infinity. In particular, the expressior» The modified power control problem can then be posed as
oo implies thatN — oo with b = K/N fixed. Furthermore, follows.
since we will be considering systems with varying number of Problem 2: For eachK, find an admissible Markov policy
users, we note that the domain and the range of the pplicyw € II that minimizes the cost function

depend on the number of usei& Throughout, we leave this Al K
dependence implicit as this should cause no confusion. J(p) = 74 <)\E[S] +E Z g (~v(k)) ) (11)
In Section lll, we expressed the importance of controlling k=1

the variance of the total received power for the single-calver the set of all stationary Markov control policiedIn
framework to be valid. The underlying assumption is that, for Admittedly, finding an optimal solutionu* € II to the
a given policy, the interference contribution from a given cepjower control problem is no simple task. We therefore consider
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conditions under which the multiuser power control probleriocus on such policies for which users are controlled indepen-
decouples, and effectively converges to a collection of inddently. Then, the power control algorithm is a state feedback law
pendent single-user systems. Decoupling is beneficial singbose sole inputis the current state of the user of interest. It fol-
it greatly reduces the dimension of the search space for laws from the law of large numbers that for single-user policies,
optimal policy. Furthermore, it leads to the desirable distribute@rianceVar[S/ K] vanishes in the large system asymptote. In-
property by which the transmit powers of the mobiles amdentally,Var[S/N] also vanishes and the interference contri-
controlled independently. In particular, we characterize thmition from all incell users can be assumed constant. Thus, un-
behavior of a cellular network in the large system asymptote lie in the case of centralized policies, we need not worry about
Definition 1. First, we state a simple consequence of the famintrolling variations in intercell interference. Furthermore, be-
that we only admit policies itl. cause the normalized varian®er[S/N] goes to zero for large
Corollary 1: Let {u1, u2, ...} be a sequence of admissiblesystems, we can assume that the incell interference power re-
policies such that ;- € IT is a policy for a system witli users mains approximately constant over time. For convenience, we

then denote this constant incell interference power spectral density
lim Var [—} =0. (12)
K—oo K A. Single-User Policy

Corollary 1 provides firm ground for Assumption 1. Indeed, this The single-user policy of Proposition 1 is a randomized
corollary implies thatVar[S/N] also vanishes for sufficiently policy. That is, for any given state € X', the actionu(z) ap-
large systems. We can, therefore, safely assume that the inteféied by the controller is selected at random according to a state
ence contribution from other cells remains constant. To redudependent probability distribution on the action spage). In
the complexity of the controlled system, we would like to find apractical systems, however, a deterministic control policy may
optimal single-user policy. That is, a policy in which decisionge more appropriate. Indeed the complexity of a randomized
concerning the control of a particular user is based strictly &ngle-user policy, or the complexity of a multiuser policy
its transmit powep, its channel gain, and the slowly varying for that matter, may be overwhelming. Optimal deterministic
total received energy. For systems with more than one usepolicies can be computed efficiently using standard tools from
a single-user policy could be far from optimal. Fortunately, thidynamic programming such as value iteration, policy iteration,
is not the case for sufficiently large systems, since for such sy- linear programming. The reader is referred to Bertsekas
tems there exist single-user policies which amptimal as seen [31] for an in depth treatment of dynamic programming and
in the following result whose proof is given in the Appendix. optimal control. Here, we assume that the reader is familiar
Theorem 1: Suppose we fix the loading factér Given any With dynamic programming and we proceed to cast the power
e > 0, there exists an integéd/ such thatl’ > M implies the control problem in a dynamic programming framework. We

existence of a stationary Markov poligyfor which write the single-user cost per stage function as
0 Nr
() < J(u*) +e 13 2\
(f2) (1*) (13) e(z) T+g<(1+a)N0W+IOW—r>

where” is an optimal policy,i is a randomized single-userynq e evaluate Markov policies based upon the average cost
policy of the form criterion

fu(x) = (u(z(1)), u(x(2)), ..., u(z(K))) 1 &

lim — Z c(xy) (14)

andu is an admissible control policy for the single-user Markov T—ooo T 4~

decision process described at the beginning of Section II.
This theorem asserts that for large systems we can trade

very complex multiuser policy* for a simple, easy to imple-

ment randomized single-user poligywithout compromising P.(z,y) = Prob{zyy1 =y |z =z, ay = u(x)}.

system performance. Because of the complexity of multiuser. o ) )

policies, it is not possible to determine numerically how Iarg_-Eh'S is a standa_rd_fqrmulat_lon in optimal control and it falls

K should be for this asymptotic behavior to come into plaj? the class of infinite horizon average cost problems. We

However, the convergence dfarS/N] seems to depend onnte that for any single-user policy of the formx) =

the ability of the power control algorithm to even out variation§*(#(1)), u(z(2)), ..., u(z(K)))

in received power. In the performance analysis of linear mul- 1

tiuser detectors for CDMA systems, it has been observed that J(i) = — <AE[L[S] +E;

re the single-user system evolves according to the Markov
transition probability

i g (v(k))] )

the large system asymptotics for the SIR are valid for very mod- K k=1

erate values oK andV of the order of 50 (see, e.g., [29], [30]). 1 &

Based on these results, we expect the performance of the optimal =AB[r]+ Eufg(v)] = lim o > e(xy)
single-user policy to match that of the optimal multiuser policy t=1

very rapidly asK increases. by ergodicity of the finite state system. The average cost of (14)

Inview of Proposition 1, and for large systems, there is no logsthen equivalent to the multiuser average cost of (9) for any
in optimality in considering single-user policies. We hencefortsuch single-user policy.
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The discussion above reveals the interplay between three fun- TABLE |

damental quantities: the expected quality of ser¥ipg )], the CHANNEL PARAMETERS
interference to other useRjr], and the number of incell users W = 1.25 MHz total bandwidth

I, W R = 14.4 kbps bit rate

K = {WJ . Ny = —169 dBm/Hz noise density
Iy = —159 dBm/Hz interference density

For instance, for a fixed interference power spectral density G =-108 dB mean path gain
I, the total number of incell users decreases as users demand a=6 intercell factor

better connections. For a specific cellular system, the relation
betweenE[g(v)], E[r], and K can be made explicit by repet-

itively solving the dynamic program defined above for Varioughe_palrame'ltter values for_lfhgl wllreless channel used in our nu-
values of\ and/j. In the next section, we study how this frameMerical results appearin fablée I. . .
In practical systems, the feedback bit rate dedicated to

k b loyedtoi th f fth
work can be smployed |0 Improve e periormance orthe pOWerwer control information is fixed (e.g., 800 bps for the 1S-95

control loop in the 1S-95 standards [32]. PO
P 32] standard [32]); as a consequence, simpler control signals

imply more frequent power updates. Having stressed in the
introduction how critical a short control period is to high

In this section, we illustrate how dynamic programming agapacity cellular networks, we expect simpler algorithms with
plies to power control. The channel power gain of a typical wirgrequent updates to outperform more complex power control
less connection varies as the mobile user travels around the eglliorithms. We first study the class of binary up/down power
Such variations are known to happen on two different scale®ntrol algorithms. For any given feedback bit rate, these
Shadow fading is a slowly varying process generated by chang@sorithms yield the shortest possible control period. Moreover,
in the environment of the mobile. These changes occur on i@y are widely employed in 1S-95 based CDMA systems
scale of distance between objects (such as buildings) in the f8P]. When proportional increments are used, the family of
vironment. The second scale of variations, multipath fadingenstrained subsets corresponding to binary cokitiel, ()}
is much smaller as it happens over distances of the order otaas described in (4). Furthermore, at each control instant a
wavelength of the carrier. At vehicular speed (velocity less thafobile can either increase or decrease its transmit power by an
100 km/h), the mean path gain and the shadow fading procggsount proportional to its current power level
remain essentially constant over multiple control periods. Mul- 1
tipath variations however do not. In what follows, we assume P41 € {Ept-/ ﬂpt}
that the mean path gain and the shadow fading process are ap- , ,
proximately constant over time frames of interest. Accordingly!Nere/ is a designated constant; the 1S-95 standard suggests

variations in channel gain are entirely due to multipath fading® Va!ue of# = 1.25. The numerical results are obtained for
To model multipath fading, we revisit the wireless chann@® finite channel state space, and the system parameters for our

introduced in Example 1. More specifically, we consider aimulations are found in Table Il. For a given interference power

first-order autoregressive random process with complex gaﬁHeCtral densityo, t'he SIR at the output of th? matched filtg.r
¢ and autocorrelation coefficient, as described in (5). This &N b€ expressed in terms of the channel gaind the transmit

channel model corresponds to the standard Rayleigh-fadifgVeér? as
environment [33] with an autoregressive autocorrelation _ StDt
structure. The autocorrelation coefficigntmay depend on the i (1+a)o?+ IZW'

speed of the mobile, the nature of the environment, and theI'he individual cost per stage function was originally introduced

wavelengthy of the carrier. If we consider the situation where . . .
) X ) . . In,Section Ill. In our analysis, we take the following cost func-
the propagation environment is such that power is recewrd

i L X . ion:
uniformly from all directions, the autocorrelation function o

V. NUMERICAL EXAMPLE

the channel can be modeled as a Bessel function of the first () = e !, 7<3 (15)
kind of order zero [34], i.e., 9= (y—=2)e= "2~ >3
Elerrel] = Jo (27”’T> We put an upper bound on the penajtwith the understanding
(] that below a certain SIR, the decoder outputs incoherent data.

wheree* denotes the complex conjugate ofin general, the The cost as a function of SIR appears in Fig. 1. _
channel will be more strongly correlated if the power is not re- The optimal stationary control policy can be obtained by di-
ceived uniformly from all directions. In our numerical analysigiect application of either the successive approximation method

we consider correlation coefficients of the form or the policy iteration algorithm. Both techniques are standard
9T dynamic programming tools. In Fig. 2, we show the optimal

p=Jy < “) . decision policy as a function of transmit powgeand channel
¥ gain s; the correlation coefficient of the simulated channel is

For a carrier frequency of 900 MHz and a control period of = 0.95. Unfortunately, the optimal policy has no simple struc-
1.25 ms, it is sufficient to consider correlation coefficients frorture and is, therefore, difficult to implement in practical systems.
0.8 to 1 to cover the entire range of reasonable vehicular speddsmputing the solution to the dynamic program in real time
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TABLE I Best Threshold Policy (p = 0.95)
SYSTEM PARAMETERS 0.5 T r . . . .

Prmaz = 24 dBm  maximum radiated power
Pmin =5 dBm  minimum radiated power

T, = 1.25 ms control period #0.45
=125 proportionality constant S
)
Y
g
Cost Function g < 0_4,/\’\\\
04 ! ! ! TN
0.35¢
0.3f et e it i it
0'353 4 5 6 7 8 10
0.25¢ 1 SIR Threshold (dB)
=
5 02 Fig. 3. Expected cost of threshold policies for various thresholds. The
0.15- | performance of the best threshold policy comes close to that of the optimal
’ single-user policy.
0.1
0.05 | ] IThreshoId Pe?rformance
—q 0 -5 0 5 10 15 20
v (dB) ©0.8r
C
Fig. 1. Plot of the cost metrig as a function of SIR. A low SIR induces a high E
penalty, while a sufficiently high SIR yields no cost. 806k
&
Decision Rule (Up: Gray / Down: White) 80 4
NU.4F
©
E
(o]
Z20.2F
0
8.8 0.85 0.9 0.95

Correlation Coefficient p

Fig. 4. Normalized performance of a threshold policy designed for a
correlation coefficient op = 0.95. The performance loss associated with this
suboptimal scheme is minimal with a degradation of at most 10%.

Normalized Channel Gain (dB)
\ )
b ()]

As shown in Fig. 3, the performance of the best SIR threshold
-0.5 ONormaI(iJz-g g Tran;mit Pkogr (@B) 2 policy comes very close to that_of the optimal single-user policy.
An SIR threshold type of policy also seems very robust. In
Fig. 2. Graphical display of the optimal binary single-user power contrétig. 4, we show the performance of a threshold policy designed
policy. As the link quality improves, the mobile unit reduces its powefor p = 0.95, and employed over channels with various cor-
consumption. relation coefficients. The performance metric is normalized in
that we present the ratio of the optimal cost over the cost in-
would be too time consuming. To employ this control policgurred by the threshold policy. Performance degradation is at
in a real cellular system, the decision rule would have to lmost 10%. Moreover, the worst performance occurs when the
stored as a look-up table. Although storing the control poliashannel is highly correlated, and thus easily predictable. These
for one specific channel profile can be achieved rather easitgsults motivate the use of an SIR based threshold policy. The
doing so for every possible combination of system parametehgnamic programming framework can then be used to compute
is again impractical. We therefore explore simpler alternativéise best possible threshold for any given system parameters. Al-
to the optimal single-user power control algorithm, using thernatively, the threshold can be varied dynamically according
optimal policy as a bench mark for performance. to the current channel profile of the corresponding user.

One obvious way to reduce the complexity of the power con- Before we conclude this section, we provide a brief compar-
trol algorithm is to implement a standard threshold policy, mudkon of algorithms with different complexity. We mentioned pre-
like the policies employed in 1S-95. When the SIR exceeds thi®usly how we expect simpler algorithms with frequent updates
set threshold, the mobile unit is instructed to power down; otte outperform more complex power control algorithms. This in-
erwise, the unit powers up. The particular threshold used in thation is confirmed numerically for the cost function and the
algorithm may depend on the estimated channel parametevseless channel introduced in this section. Fig. 5 shows the
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04 _ Algorithm Gomplexity as well as the sum of the received powgrdeading to an alter-
: [ — Binary | native cost function of the form
| --- 4-level e
0.38- L L [ AE[Z] + AEIS +E |3 g (v(k)) (16)
K z s gy -

= k=1
80.36} H ; ; ;
- owever, a wireless connection may be subject to very large
g fluctuations in channel gain and the cost function of (16) would
%’0.34' lead to the undesirable behavior, where users are dropped very

rapidly to the benefit of a smaller average transmit power. Effec-
tively, this is equivalent to limiting the coverage of a base sta-
tion. To reduce average transmit power, one should consider de-
0 ‘ ‘ ‘ creasing the radius of each cell rather than reducing the quality
'8.8 0.85 209 095 1 of service for users around the cell boundary. More base sta-
Correlation Coefficient p . . . .
tions yield higher capacity, better coverage, and lower average
Fig. 5. Performance of algorithms with various complexity. For a fixeff@nsmit power for mobile users.
feedback bit rate, the optimal binary algorithms outperforms the more complex Avenues for further research include extending this frame-
schemes. work to multiclass networks, where both voice users and data
users must coexist. Furthermore, the performance of binary

performance of algorithms with different complexity. We emup/down control should be compared against more complex
phasize that the three power control policies are compared €@ntrol schemes, such asiterative schemes proposed in the power
a fixed feedback bit rate. Thus, the binary policy adjusts ti@ntrol literature. A more accurate analysis would also include
transmit power of the mobiles twice as often asfthe-level up- admission control and handoff in the problem formulation.
datespolicy, and three times as often as #ight-level updates

policy. Furthermore, to insure a fair comparison, we tailored the APPENDIX

policies to the wireless channel. That is, for any particular cor- thaorem 1 Suppose we fix the loading factér Given any

relation coefficient, we compare the three best policies witth> 0, there exists an intege¥ such thatk > M implies the
their respective classes. We can see that the binary Up/dowrb%'sténce of a stationary Markov poligyfor which
gorithm outperforms more complex algorithms, corroborating

our initial intuition and offering support for our detailed study J(p) < J(p*)+e a7

of binary up/down power control algorithms as opposed to more ) , L . .
complex schemes. wherep* is an optimal policy,i is a randomized single-user

policy of the form

°
w
N

VI. DISCUSSION ANDCONCLUSION f(x) = (u(z(1)), u(z(2)), ..., u(z(K)))

we prgsented a new approach to the desgn of POWET CQftq,, is an admissible control policy for the single-user Markov
trol algorithms for cellular CDMA systems. This technique i§ioision process described at the beginning of Section II.
based on a cost minimization framework and incorporates asto- proof: The essence of the proof is to construct a
chastic dynamic channel model as part of the problem definiyygje-user policy whose performance comes arbitrarily close
tion. The stochastic channel model allows for the control poligy, being optimal. First, we derive a bound for variations in the
to take into account fast variations in channel gain. The framggst functiong while substitutingg[S] for S in (k).
work of dynamic programming was used to characterize the op-_ et ¢ > ( be given. The performance metrcis bounded,
timal power control algorithm. For large systems, the multiusgbntinuous, and monotone decreasing; it is therefore uniformly
solution was shown to decouple, and effectively converge ta:gntinuous. It follows that the functiog(y(k)) is uniformly
single-user solution in which users are controlled independen@yntinuous inS > r(k) for any NgW/N > 0. Then, there exits
We have also shown how the methodology derived in this> 0 such thatS; — Ss|/N < & implies
paper can be applied to a Rayleigh-fading channel model with a
first-order autoregressive autocorrelation function. In a numjg( Nr(k) >
ical study, the performance of a simple threshold policy was (1 4+ a)NoW + 51 — r(k)
compared with that of the optimal single-user policy. It was —y ( Nr(k) )‘ << as)
found that the performance loss in adopting a threshold policy is (14 a)NoW + Sy —r(k) 2

negligible, offering support to the threshold decision rules ey all r(k) = sp, (s, p) € S x P. Assume now that > 0 is

ployed in IS'9_5 based CDMA systems. given. From Corollary 1, and for a fix loading factlarwe have
In formulating the power control problem, one could bé

tempted to minimize the sum of the transmit powers lim  Var [ﬁ} —o0.
K
74 Z p(k) We recall from Definition 1 that, for a fixed loading factor, the

1 expressiony — oo impliesN — oo sinceb = K/N is fixed.
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Then, there exists an integ@f; such that for a sequence ofAlso, define the associated single-user pojicyy
optimal policies{u}, u5, ...} and for all K > M; R
v (x) = (u(z(1)), w(2(2)), ..., u(z(K))).

S €62
Var {N} < 29 By construction and since.* is nonselective, we obtain
e E;[S] = E,-[S] and

whereg,.x = max{|g|}. Underp*, K > M;, the Chebyshev
inequality asserts that

Prob{%Zé}giVM[é}< c . (19)

%(AE*%[S]éEﬂ{g(<1+a>No$7I§)ﬂ[S]—r<k>>D

62 N 2gmax K
1 Nr
Consequently, for policy.* with K > M, we obtain :?()\Eu* [S] +Z E“X[g<(1+a)N0W+E,J*[S]—r(k)>D'
k=1
E[g(v(k))] (21)
[ Nr(k) ) : :
>E The last step of the proof is to relate the left-hand side of
Z e ((l—l—a)NoWJrE[S] (k) P P

(21) to J(jz). Because the transmit power sp&eés finite, the
Nr(k) variance of the received powe(k) is uniformly bounded across

I E <(1 + a)NoW + E[S] — T(g;)) _9(7(1“))” users. Since users are controlled independently in a single-user

policy, uniform boundedness implies

g -g < Nr(k) )}
I\ T+ a)NoW + E[S] — (k) lim Var [%} _0
K—o0
et =) o
9 (1+ a)NoW + E[S] — r(k) gy i(Enog}iseesquently, there exists an intedds such thatk > M,
given {w < 5” Prob{w < 5} P
N N Var [—] <
N 2gmax

B Nr(k) s

"I\ T+ o) NoW + E[S] — (k) —9(v(k)) for any single-user policg.. Now, we can use an argument anal-

ogous to that used to produce (20) to show thatifor M,

o [ 15— EIS) 5~ EIS])
gven{ ——— > 6| Probq ——— >§ K
I 0l e I = %(AE[S] Sl (v(k))])
k=1

Vr [g ( 5 Novj\érikl)«:[S] - r(k)ﬂ

! ars - Nr(k)
_ € prob {W < 5} <k \E ”;E [g<(1+a)NOW+E[S]—r(k)>] e
2 N 22)
~ Gmax P b{—|S_E[S]| >5}
max P10 N 2> By (2(_))—(22){ we conclude_ that, fd{ > max{M, M>},
there exists a single-user poligysuch that
o Nr(k) B . o
INTT N +ES] () )| € J) > J(f) = 2e.
where(a) follows from (18), under the assumption tat— Noting thate is arbitrary, this completes the proof of the
E[S]|/N < 6, and(b) follows from (19). Thus, fok > Af,, theorem. m
the optimal cost function satisfies
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