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Abstract—This article examines the queueing performance
of communication systems that transmit encoded data over
unreliable channels. A fading formulation suitable for wireless
mobile applications is considered where errors are caused by a
discrete channel with correlated behavior over time. For care-
fully selected channel models and arrival processes, a tractable
Markov structure composed of queue length and channel state is
identified. This facilitates the analysis of the stationary behavior
of the system, leading to evaluation criteria such as bounds on the
probability of the queue exceeding a threshold. Specifically, this
article focuses on system models with scalable arrival profiles,
which are based on Poisson processes, and finite-state channels
with memory. These assumptions permit the rigorous comparison
of system performance for codes with arbitrary block lengths
and code rates. Based on the resulting characterizations, it is
possible to select the best code parameters for delay-sensitive
applications over various channels. Random codes and BCH
codes are then employed as means to study the relationship
between code parameter selection and the queueing performance
of point-to-point data links. The methodology introduced herein
offers a new perspective on the joint queueing-coding analysis
of finite-state channels with memory, and it is supported by
numerical simulations.

Index Terms—Queueing Analysis, Communication Channels,
Digital Communication, Error Correction Codes.

I. INTRODUCTION

Wireless communication systems are now designed to ac-
commodate a wide range of applications. Modern mobile
devices must support heterogeneous data flows with a variety
of delay and bandwidth requirements. While point-to-point
channels are well studied, the asymptotic approaches favored
by classical information theory offer only limited insight into
the efficient designs for delay-sensitive communications. In-
deed, real-time traffic and live interactive sessions are typically
subject to very stringent delay requirements. Such constraints
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are not captured by asymptotic regimes where block lengths
and, consequently, delay become unbounded. While a number
of recent contributions address the tradeoffs between average
power, throughput and delay [1], [2], [3], [4], [5], [6], many
of these articles make idealized assumptions about the per-
formance of coded transmissions. These assumptions may be
reasonable for long codewords, but they are hard to justify for
low-latency communication over channels with memory. In
this article, we study the impact of certain coding strategies
on the queueing performance of finite-state channels with and
without memory. This is accomplished without resorting to
common simplifying assumptions about coded transmissions.

Before diving into the details of our model, we present a
brief survey of pertinent prior research contributions. Forward
error-correcting codes have historically played an instrumental
role in digital communication systems by providing protection
against channel uncertainties. For instance, it is well-known
that for rates below capacity, one can improve transmission
reliability by increasing the block length of a code. There
is a tradeoff between the improvements offered by low-rate
codes and the payload reduction associated with an increase
in redundancy. Finding a suitable balance between these two
intertwined considerations is a fundamental pursuit in coding
theory. The Shannon capacity, for example, characterizes the
maximum achievable data rate a channel can support subject
to an asymptotic reliability constraint as block length tends to
infinity [7].

Due to the delay requirements of certain modern appli-
cations, one may be forced to employ schemes with short
codewords. While sometimes necessary, short codes do not
benefit from the concentration of empirical measures for errors
and channel state occupancy. This may produce excess decod-
ing failures and undetected errors. Furthermore, undesirable
events may be correlated in time, thereby causing queue
buildups at the source that induce unacceptable delays at the
destination. The last issue is especially important for channels
with memory, as correlation in service is known to exacerbate
deviations in queueing systems. This points to the need to
carefully explore the tradeoffs between queueing and coding
for communication systems with tight delay requirements,
giving due consideration to optimal block lengths and code
rates.

Delay-sensitive systems have been studied in the past,
leading to several landmark contributions [8], [9], [10], [11].
For instance, advanced power-control policies can be tailored
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to the needs of various applications [12], [13], [1], [3], [14],
[6], [15]. Still, such policies usually disregard coding issues
by considering a power threshold for reliable transmission.
Moreover, the emphasis is often on average delay, or average
queue length under Little’s law, and the optimization objective
naturally leads to dynamic programming formulations [16],
[1], [2], [17], [18]. On a different note, the recent advent of
network coding and the complementary approach of channel
coding over networks have been applied to short-block, delay-
sensitive communications [19], [20]. Such schemes seem es-
pecially well-suited for packet-loss networks, and the ensuing
framework represents a potential alternative to automatic re-
peat requests when feedback is slow or error-prone. Although
related, these contributions differ from our formulation in that
the main focus is on the operation of the system at the packet
level, whereas we seek to characterize the impact of channel
behavior at the symbol level.

We emphasize that the block fading models adopted in
many existing studies [2], [3], [4], [13], [16] do not consider
the per-symbol correlation and do not allow for a consistent
comparison of the performance associated with different block
lengths. In block-fading models, varying the block length
also implicitly changes the fading process. Many previous
contributions [14], [6], [15] study fixed channel characteristics
over a transmission/scheduling slot of multiple channel uses,
and assume that the channel varies independently from slot
to slot. This differs from our setting which takes into account
the channel dynamics per symbol and the correlated service
events which significantly affects the queue distribution and
system delay.

The primary goal of this article is the joint coding-queueing
characterization of delay-sensitive communication systems.
The system dynamics and fading process (i.e., the channel
correlation) are treated from a symbol-level perspective, while
a rigorous analysis is conducted at the block level. That is, the
block-level behavior is induced from the channel parameters
in a consistent fashion. This enables the fair comparison of
the queueing performance of communication systems with
different block lengths and code rates, and finding the best
coding parameters.

Transmission delay in a communication system consists of
two parts, coding delay and queueing delay in the buffer.
Several existing contributions (e.g., [3], [4], [11], [13], [16],
[6]) do not consider channel coding for data protection, hence
coding delay is effectively taken to be negligible. In many
such works, it is assumed that if the transmission power is
above some threshold the message is successfully transmitted
and otherwise it fails. As such, there is no underlying channel
coding or block length; only queueing delay is accounted
for. The modeling uncertainty associated with this viewpoint
may be acceptable for scheduling, but it cannot be used for
parameter selection in a coded system.

In our framework, the random fading of the channel can
result in decoding failures and retransmissions of the segments
of each individual packet. More specifically, the model consid-
ered in this paper accounts for the queueing delay due to the
random arrival process (Poisson/Markov modulated Poisson)
and the general packet service time which stems from the

random fading process and the choice of coding parameters.
In the present PHY layer model, both the arrival and fading
processes contribute to the system dynamics which remain
consistent irrespective of code rate and block length.

Optimum code-rate selection has previously been studied
for Gilbert-Elliott erasure channels with Bernoulli arrivals and
maximum-likelihood decoding [21]. An important distinction
of our framework, compared to previous contributions, is the
rigorous characterization of queueing behavior for communi-
cations over finite-state error channels, as opposed to erasure
channels. This nontrivial extension arises through the fact that
erasure channels intrinsically pinpoint the location of channel
distortion events at the receiver whereas error channels do
not. This lack of location information renders the decoding
process much more challenging. Although technically more
demanding, error channels permit the more realistic modeling
of practical communication links. For example, in our analy-
sis, detected and undetected errors both demand appropriate
considerations.

Another distinction of this study is the adoption of scalable
arrival profiles which are formed based on the Poisson process.
The proposed framework allows for the rigorous fair compari-
son of queueing performance for systems with different block
lengths, something that could not be done before. In [21],
the arrival process is Bernoulli and it is intrinsically tied to
codeword transmissions. As such, arrivals are implicitly linked
to the block length. The scaling property of a Poisson (or
Markov modulated Poisson) model, enables us to overcome
these limitations. The price to pay for this additional flexibility
is a more complicated analysis using an advanced version
of the matrix-geometric method. Our analysis leads to an
enhanced framework for code design and resource allocation
in the context of delay-sensitive wireless communications.

In addition to the channel and arrival enhancements, we in-
vestigate coding schemes such as BCH encoding with bounded
distance decoding to bring a pragmatic flavor to the analysis.
Furthermore, using random coding techniques, we present
a framework to analyze overall system performance (e.g.,
probability of buffer overflow) using both optimal decoding
and minimum distance decoding. This perspective is beneficial
because the probability of decoding failure plays a crucial
role in characterizing packet departures, queue transitions and
the stationary behavior of the transmit buffer. The introduced
methodology can also be applied to any permutation invariant
encoding/decoding scheme, where the number of symbol
errors within a codeword suffices to determine the decoding
quality.

One of the challenges in dealing with block codes over
finite-state channels with memory is the statistical dependen-
cies between decoding events that are closely spaced in time.
For instance, if the underlying channel forms a Markov chain,
then the decoding process becomes a hidden Markov process
as block codes operate over series of channel states. This
often entails a difficult analysis of the queue behavior at the
source. To make this problem tractable, we augment the state
space by appending the value of the channel at the onset of a
codeword to the queue length. Under this state augmentation,
the coded system retains the Markov property, which facilitates
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the precise characterization of the queueing behavior at the
transmitter.

We review and extend the necessary mathematical machin-
ery to handle error events starting with the binary memoryless
channel, in Section V. This step is pivotal in better understand-
ing the encoding/decoding analysis of communication links
with errors. We then turn to finite-state channels with memory,
as originally introduced by Gilbert [22] and Elliott [23].
We use these models to assess how channel dependencies
over time can affect overall performance. It is well-known
that correlation in service can significantly alter the behavior
of a queueing system or network. Such changes should be
expected in the present scenario as well. Still, a novel facet
of the problem we are considering is the study of how such
dependencies affect the selection of optimal design param-
eters in terms of code rate and block length. Furthermore,
the presented framework can be used to derive fundamental
bounds on the maximum arrival rate that a wireless mobile
system can support when subject to certain quality of service
requirements.

The remainder of this article is organized as follows. The
arrival and departure processes of data packets at the transmit-
ter, segmentation, and the effect of feedback information are
discussed in Section II. The Gilbert-Elliott channel model is
described in Section III. The Markov model used to evaluate
queueing behavior is constructed in Section IV. A detailed
study of the coding analysis and derivations for the probabili-
ties of decoding failure are given in Section V. Issues related
to undetected errors are discussed in Section VI. Numerical
results showing the performance of our communication system
are presented in Section VII. Finally, we offer pertinent
conclusions in Section VIII.

II. ARRIVALS, DEPARTURES, AND FEEDBACK

In this section, we describe the elements that compose our
queueing system. Suppose that a packet of length L needs to
be sent over the communication channel to a destination. In the
proposed framework, this packet is divided into S segments,
each containing K information bits. The last segment is zero
padded, if needed, to conform to the prescribed length. A
block code (e.g., a BCH or a random code) is used to encode
each data segment into a codeword of length N (see Fig. 1).
These codewords are then transmitted over the communication
link. Packet arrivals at the source are initially assumed to
form an instance of a Poisson process with rate λ packets
per channel use (see Fig. 2). Therefore, the number of packets
expected to arrive during an interval of length N is equal to
λN = λN . As we will see, our framework can accommodate
more general packet arrivals, such as Markov processes with
discrete state spaces [24], [25]. This comes at the expense
of additional bookkeeping. For instance, a Markov modulated
Poisson process (MMPP) with distinct arrival rates, can be
employed to better capture bursty traffic [26] and fluctuations
in workload.

Packet sizes are assumed to form a sequence of independent
and identically distributed random variables, where each ele-
ment has a geometric distribution with parameter ρ ∈ (0, 1).

Packet of length L

1 2 · · · S − 3 S − 2 S − 1 S

Zero padded to
K bits (if needed)

Segment of
K bits

Block length N

K Information bits and
N −K Redundancy bits

Coding
Scheme

Fig. 1. Each packet is divided into S segments, and a channel encoding
scheme is used to encode each segment

Seq. of S coded blocks (Codewords)
1 2 · · · S

N CW1
...

CWS

Pa
ck

.1

Pa
ck

.2

· · ·

CW
Tx

Erroneous
CWUnreliable

Channel
RxPoisson λ

Fig. 2. Coded segments are transmitted over the unreliable communication
link. A data packet is discarded from the transmit buffer only when all its
codewords are successfully transmitted

Mathematically, we write Pr(L = `) = (1 − ρ)`−1ρ where
` ≥ 1. This assumption plays a key role in our article and it
has been selected, partly, to facilitate the analysis we wish to
carry. In particular, the memoryless property of the geometric
distribution makes for a tractable queueing model. Not too
surprisingly, having a geometric distribution for the size of
packets is commonplace in the literature [27], [28].

We can further relate the packet-length distribution to the
progression of coded transmissions. For fixed block length
N and code rate R, every successful decoding event reveals
exactly RN information bits to the destination. As such, when
a data packet contains L bits, one needs to successfully decode
S =

⌈
L
RN

⌉
codewords to complete the transmission of the

entire packet. We note that random variable S possesses a
geometric distribution with Pr(S = s) = (1 − ρr)

s−1ρr,
where s ≥ 1 and ρr = 1 − (1 − ρ)RN . Thus, in the
current setting, the number of coded blocks per data packet
S retains the desirable memoryless property. We emphasize
that, in our framework, a data packet is discarded from the
transmit buffer if and only if the destination acknowledges
reception of the latest codeword and this codeword contains
the last parcel of information corresponding to the head packet.
The departure process is governed by the parameters of the
channel and the coding scheme adopted. Generally, a lower
code rate yields smaller probabilities of decoding failure, but
it also entails having more data segments to send. In fact,
the successful decoding of a high-rate codeword results in a
larger reduction of the information payload at the queue. These
competing considerations create a natural tradeoff between
data content and probability of decoding failure. Thus, for
a given channel and load, it is important to choose the block
length and the code rate that give the best overall performance.
In Section VII, we present simulation results for a system with
packets of a constant size and we compare its performance
to the corresponding system with geometrically distributed
packet lengths.

A subtle, yet important aspect associated with automatic
repeat request over unreliable connections is the amount of
feedback needed by a particular scheme. Using shorter block
lengths necessarily entails more frequent feedback messages
from the destination. In general, adequately evaluating the
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costs and benefits of various feedback strategies is a compli-
cated task. Since this is not a prime objective of this article,
we circumvent this issue by making simple assumptions.
We assume that feedback is instantaneously and faithfully
received at the source. This idealized view is frequently found
in the literature [1], [5], [8], [13], [17], [18], [19], [29],
[30]. In contrast, any detailed analysis of feedback requires
making strong assumptions about correlation between the
forward and reverse links, the delay associated with receiving
feedback, and mechanisms to cope with corrupted messages.
Although these issues warrant attention, they are outside the
scope of this article. Beyond that, we hypothesize that the
price of feedback is captured by having a portion of every
data segment dedicated to a header of length h. Of course,
this reduces the size of the packet payload to RN − h.
This crude approximation treats feedback bits as constant
overhead, and it is a modest step in better accounting for
control messages. Feedback overhead will affect the number
of segments contained in a data packet. If h information
bits in every segment pertain to the header, then the number
of successful codeword transmissions necessary to transfer a
packet becomes S =

⌈
L

K−h

⌉
, a slight variation compared

to the original value. Nevertheless, S retains a geometric
distribution, albeit with parameter ρr = 1− (1− ρ)K−h.

A very important aspect of queueing systems is stability.
The Foster-Lyapunov criterion ensures that our simple system
remains stable so long as the packet service rate exceeds the
arrival rate. To calculate the mean service rate, we recall
that a packet leaves the queue whenever a codeword is
decoded successfully and this codeword carries the last data
segment of the head packet. Let Ps|E(e) and Pf|E(e) denote
the conditional probabilities of decoding success and failure,
respectively, given the number of errors within a block, E = e.
By reciprocity, the conditional success probability is equal to
Ps|E(e) = 1 − Pf|E(e). Then, the average service rate can
be computed as µN = ρrE

[
Ps|E(e)

]
packets per codeword

transmission. The stability factor for this system is λN

µN
, and

the process is stable provided that this ratio is less than unity.
Conditional failure probabilities will be computed explicitly
in Section V for different channels and coding schemes.

III. GILBERT-ELLIOTT CHANNEL MODEL

The term Gilbert-Elliott channel often refers to a wide
class of finite-state fading channels that model communication
links with memory. In this article, however, we allude to its
original definition and we use the denomination Gilbert-Elliott
channel to designate a binary symmetric channel that features
two possible states: a good state g with crossover probability
εg, and a bad state b with crossover probability εb. While
simple, this model can account for uncertainties associated
with transmitting symbols over a noisy channel and correlation
over time. The evolution of the channel is governed by a finite-
state Markov chain. We denote the transition probability from
b to g by α, and we label the transition probability in the
reverse direction by β. Thus, the transition probability matrix
for this channel is

P =

[
1− α α
β 1− β

]
.

g b
β

α0 0
1− εg

1
εg

1
1− εg

0 0
1− εb

1
εb

1
1− εb

Fig. 3. The Gilbert-Elliott model is one of the simplest non-trivial instantia-
tions of a finite-state channel with memory. State evolution over time forms
a Markov chain, and the input-output relationship of this binary channel is
governed by a state-dependent crossover probability, as illustrated above.

A graphical representation of this channel appears in Fig. 3. It
is worth mentioning that the steady-state probabilities of the
good and bad states are α

α+β and β
α+β , respectively.

In defining matrix P, we have implicitly ordered the states
from bad to good. With a slight abuse of notation, we use this
bijection between channel states and their numerical indices
to refer to specific entries in the matrix. We employ random
variable Cn to denote the state of the channel at time n. Then,
entry [P]c,d represents the probability of a channel transition to
state d, given that the current state is c. For groups of random
variables, we use the common expression P·|·(·|·) to denote
conditional joint probability mass functions. Accordingly, we
can write PCn+1|Cn

(d|c) = Pr(Cn+1 = d|Cn = c), where
c, d ∈ {b,g}. In a similar fashion, PCn+N |Cn

(d|c) can be
obtained by looking at the proper entry of matrix PN .

To proceed, we need a way to compute the conditional
distribution of the number of errors that occur during N
consecutive uses of the channel. Let E denote the number
of errors occurring in a data block. The distribution of E can
be obtained using the matrix of polynomials

Px =

[
(1− α)(1− εb + εbx) α(1− εb + εbx)
β(1− εg + εgx) (1− β)(1− εg + εgx)

]
.

Throughout, we employ JxjK to represent the linear func-
tional that maps a polynomial in x to the coefficient of xj .
Using this notation, we get PE,CN+1|C1

(e, d|c) = Pr(E =
e, CN+1 = d|C1 = c) = JxeK

[
PNx
]
c,d

. Eventually, we will
use this distribution to compute the conditional probabilities
of decoding failure and undetected error. We note that closed-
form recursions for these values have been derived a number
of times in the past [23], [31].

IV. QUEUEING MODEL

We are ready to examine more closely the queueing be-
havior of our communication link. Throughout, we use Qs
to denote the number of packets waiting in the transmit
buffer. The channel state at the same instant is CsN+1. By
grouping these two random variables together, we can con-
struct a discrete-time Markov chain (DTMC), which we write
Us = (CsN+1, Qs). The resulting DTMC is of the M/G/1
type, and there are many established techniques that apply
to such systems [32], [33], [21]. For the binary symmetric
channel, input-output properties are unchanged over time. In
this degenerate case, the queue length Qs contains all the
information relevant to the DTMC, and the random variable
Us is mathematically equivalent to the state of the transmit
buffer.
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(g, 0) (g, 1) (g, 2) (g, 3) · · ·

(b, 0) (b, 1) (b, 2) (b, 3) · · ·

Fig. 4. State space and transition diagram for the aggregate queued process
{Us}; self-transitions are intentionally omitted.

π0 πi πi+2

(g, 0)

(b, 0)

(g, 1)

(b, 1)

· · ·

F̂(1)

(g, i)

(b, i)

F̂(i)

F(i−1)

B

(g,i+1)

(b,i+1)

F̂(i+1)

F(i)

F(1)

B

(g,i+2)

(b,i+2)

G2[2, 1]G[1, 2]

Gi−1[2, 1]

F̂(i+2)

F(i+1)

F(2)

F(1)

BA AAAÂ

· · ·

· · ·

Fig. 5. Level transition diagram and probabilistic interpretation of G

Using the total probability theorem, the transition probabil-
ities for the DTMC {Us} can be decomposed as

Pr(Us+1 = (d, qs+1)|Us = (c, qs))

=
∑
e∈N0

PQs+1|E,Qs
(qs+1|e, qs)PE,C(s+1)N+1|CsN+1

(e, d|c).

Examining the summands, we need to derive expressions for
PQs+1|E,Qs

(qs+1|e, qs). Suppose that the current number of
packets in the queue is Qs = qs. Then, admissible values for
Qs+1 are restricted to the collection {qs − 1, qs, qs + 1, . . .}.
The corresponding transition probabilities are given by

PQs+1|E,Qs
(qs − 1|e, qs) = a0(1− Pf|E(e))ρr,

PQs+1|E,Qs
(qs + i|e, qs) = ai+1(1− Pf|E(e))ρr

+ ai
(
Pf|E(e) + (1− Pf|E(e))(1− ρr)

)
, i ≥ 0

(1)

where ai = (λN)i

i! e−λN is the probability that i packets arrive
during the transmission of one codeword. When the queue
is empty, {Qs = 0}, the transition probabilities reduce to
PQs+1|E,Qs

(qs + i|e, 0) = ai with i ≥ 0.
Using these equations, we can get the probability transition

matrix of the Markov process {Us}. First, we introduce the fol-
lowing convenient notation, where q ∈ N0 and c, d ∈ {g,b},

µicd = Pr(Us+1 = (d, q + i)|Us = (c, q)) i ≥ 1,

κcd = Pr(Us+1 = (d, q)|Us = (c, q))

ξcd = Pr(Us+1 = (d, q − 1)|Us = (c, q)).

Similarly, when the queue is empty, we write µi0cd =
Pr(Us+1 = (d, i)|Us = (c, 0)) and κ0

cd = Pr(Us+1 =
(d, 0)|Us = (c, 0)). Possible state transitions are illustrated
in Fig. 4.

Next, we review briefly the matrix-geometric method, an
efficient way to compute the stationary distributions of chains

with repetitive structures. We can represent the equilibrium
distribution of our system as a semi-infinite vector π =
(π(1), π(2), . . .), where π(2q + 1) = Pr(C = b, Q = q) and
π(2q + 2) = Pr(C = g, Q = q). Alternatively, we can group
pairs of states together and write π = [π0 π1 π2 · · · ] where
πq comprises the stationary probabilities of the qth level of the
chain with πq = [π(2q + 1) π(2q + 2)]. Using this notation,
one can express the detailed balance equation πT = π in
terms of the transition probability matrix T, which appears in
block-partitioned form below

T =


Â F̂(1) F̂(2) F̂(3) · · ·
B A F(1) F(2) · · ·
0 B A F(1) · · ·
...

...
...

...
. . .

 .
The labels A, F, and B symbolize local, forward, and back-
ward transition-probability blocks, respectively; the superscript
(i) indicates that i additional data packets are present in the
buffer at the next time instant; and the hat designates instances
where the queue is initially empty. More specifically, we have

F(i) =

[
µibb µibg
µigb µigg

]
, A =

[
κbb κbg
κgb κgg

]
, B =

[
ξbb ξbg
ξgb ξgg

]
.

For an empty queue, the blocks become

F̂(i) =

[
µi0bb µi0bg
µi0gb µi0gg

]
, Â =

[
κ0

bb κ0
bg

κ0
gb κ0

gg

]
.

Figure 5 shows the possible transitions among the different
levels of the system.

Proposition 1: Let G be the limiting matrix of the recursion

Gi+1 = −L−1

B +

∞∑
j=1

F(j)Gj+1
i

 (2)

starting from G0 = 0 and where L = A − I. For j ≥ 1, the
stationary probability vectors πj associated with T are given
by

πj = −

(
π0Ŝ

(j) +

j−1∑
k=1

πkS
(j−k)

)(
S(0)

)−1

,

where F(0) = L, Ŝ(j) =
∑∞
l=j F̂

(l)Gl−j for j ≥ 1, and S(j) =∑∞
l=j F

(l)Gl−j for j ≥ 0. Vector π0 is uniquely determined
by the normalization condition, and it can be found by solving

π0

[
(L̂− Ŝ(1)(S(0))−1B)♦

∣∣∣1T −H1T
]

= [0|1],

where H =
∑∞
j=1 Ŝ

(j)
(∑∞

j=0 S
(j)
)−1

, L̂ = Â − I, and the
symbol ♦ denotes an operator that discards the last column of
the corresponding matrix [32].

Proof: A proof for an equivalent continuous-time formu-
lation is available in [32]; it is based on solving πT̃ = 0. The
discrete-time case can be obtained by defining T̃ = T − I,
which leads to a solution for πT = π, as desired.

Matrix G admits a nice interpretation: entry [G]r,c is the
conditional probability that the Markov process first enters
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level i − 1 through state c given that it starts at level i in
state r [32]. Such a matrix must naturally satisfy the relation

AG + B +

∞∑
j=1

F(j)Gj+1 = G,

and this equation can be solved recursively, as described
above. Figure 5 illustrates the probabilistic interpretation of
G and its powers. As a side note, we emphasize that all the
matrix equations simplify to scalar computations for the binary
symmetric channel.

Remark 1: Once the stationary distribution of the queue
is calculated, the average time a packet spends in the system,
called the average end-to-end delay D̄, can be computed using
Little’s law D̄ = Q̄/λ, where Q̄ is the average queue length
with Q̄ =

∑
q q (π(2q + 1) + π(2q + 2)).

To conclude this section, we introduce a slight generaliza-
tion of the arrival process. Consider a two-state discrete-time
Markov-modulated Poisson process with arrival rates λ1 and
λ2, MMPP(λ1, λ2). The only elements of our analysis that
need to be modified are the blocks in the transition probability
matrix T; they become 4 × 4 matrices to account for the
state of the modulating process. Proposition 2 offers a formal
description of the quantities involved in making appropriate
changes.

Proposition 2: Suppose that T1 represents the amount of
time the arrival process, MMPP(λ1, λ2), spends in modulating
state one during the transmission of a codeword. The joint
probability that i packets arrive during that time interval
together with the modulating process transitioning to state
AN+1, conditioned on starting state A1, is

PKa,AN+1|A1
(i, l|m)

=

N∑
t=0

PKa|T1
(i|t)PT1,AN+1|A1

(t, l|m), l,m ∈ {1, 2}

where subscript Ka denotes the number of arrivals and
PT1,AN+1|A1

(t, l|m) accounts for the occupation time of the
modulating process as well as edge transitions [34, Lemma 1].
The conditional distribution of arrivals PKa|T1

(i|t) becomes

i∑
k1=0

i−k1∑
k2=0

(λ1t)
k1

k1!
e−λ1t

(λ2(N − t))k2
k2!

e−λ2(N−t).

Collecting these results, we gather that ai must be replaced
by PKa,AN+1|A1

(i, l|m) in the transition probabilities of the
queue, (1). This yields 4× 4 blocks in the modified transition
probability matrix. In the revised formulation,

πq =
[
π(4q + 1) π(4q + 2) π(4q + 3) π(4q + 4)

]
,

which corresponds to having q packets with a specific pair of
channel state and modulating state for the arrival process.

V. PROBABILITY OF DECODING FAILURE

In the previous section, we presented a general framework
for the queueing analysis in which, various encoding/decoding
schemes can be adopted. In this section, we derive probabilities
of decoding failures for several scenarios. We begin with the
simpler BSC case, and then we proceed to the Gilbert-Elliott

channel. Still, the applicability of our framework is not limited
to the particular schemes studied in this section.

A. Random Coding with ML/MD Decoding

Consider a coding scheme in which a codebook of size
M = 2NR is generated at random. As before, R denotes
code rate and N stands for block length. For every index i ∈
{1, . . . ,M}, a codeword X(i) is selected uniformly and inde-
pendently from the set of length-N binary sequences, {0, 1}N .
The maximum number of information bits encoded in each
transmission is K = log2M . For performance assessment,
we assume that one of the codewords is chosen at random and
sent over the communication channel. On the receiver side, a
maximum likelihood (ML) decision rule is used to decode the
received vector Y; that is, X̂ = arg maxX PY|X(y|x).

1) Binary Symmetric Channel: For our memoryless chan-
nel, the ML decoder actually decodes to the closest valid
codeword. The ML decision rule is therefore equivalent to
the minimum distance (MD) decoder. A subtle, yet important
point in analyzing this decoder is that the decoding radius is
not fixed in advance; this can be inferred from the following
well-known result.

Theorem 1 (Fano [35]): Random coding is employed to
send information over a BSC(p). Assume that ML decoding is
performed at the receiver, with ties treated as decoding failures.
Then, the failure probability for this scenario is given by

Pf =

N∑
e=0

PE(e)Pf|E(e) (3)

=

N∑
e=0

(
N

e

)
pe(1− p)N−e

1−

(
1−2−N

e∑
i=0

(
N

i

))M−1
 .

We note that this result holds for any forward error correc-
tion scheme in which all codewords are equally likely, and that
they are pairwise independent (e.g., Shannon random coding
or random linear codes). Moreover, the format of (3) extends
to other encoding strategies. For a BSC(p), random variable
E possesses a binomial distribution and a suitable expression
for the conditional probabilities of decoding failure should be
substituted. In [36], Fano’s result is modified to better handle
ties, and it is generalized to a wider class of channels. It turns
out that, for our purpose, this modification has a negligible
effect on performance; and it is therefore disregarded.

2) Gilbert-Elliott Channel: Having gained valuable insight
with the BSC(p), we turn to the more challenging case.
We derive probabilities of decoding failure for the Gilbert-
Elliott channel under ML decoding, and conditioned on the
occupancy times. We emphasize that knowing the empirical
channel state distribution is key in finding useful expressions
for failure probabilities. Let Ng and Nb = N − Ng repre-
sent the numbers of visits to each channel state during the
transmission of a length-N codeword. These random variables
are sometimes collectively called the channel state type [37].
Using the empirical state distribution and the corresponding
conditional error probabilities, one can average over all chan-
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nel types to get the probabilities of decoding failure while
accounting for boundary states,

Pf,CN+1|C1
(d|c)

=

N∑
ng=0

Pf|Ng
(ng)PNg,CN+1|C1

(ng, d|c),
(4)

where PNg,CN+1|C1
(·, ·|·) is given by [34, Lemma 1]. One can

also compute this latter quantity using the N -th power of the
matrix generating function of the good state occupation time.

G(x) =

[
(1− α)x αx

β 1− β

]
.

We stress that the failure probabilities depend on the initial and
final states of the channel through the distribution of Ng. Since
we are interested in moderate block lengths, on the order of
the mixing time of the channel, these boundary states can have
a significant impact on the probabilities of decoding failure.

For a specific channel realization, let Xc and Yc be the
subvectors of X and Y corresponding to time instants when
the channel is in state c ∈ {g,b}. We denote the number
of errors in state c by Ec = dH(Xc,Yc), where dH(·, ·) rep-
resents the Hamming distance. Conditional error probability
Pf|Ng

(ng) can then be written as
ng∑
eg=0

nb∑
eb=0

Pf|Ng,Eg,Eb
(ng, eg, eb)PEg,Eb|Ng

(eg, eb|Ng). (5)

Given the channel type, the numbers of errors in the good and
bad states are independent,

PEg,Eb|Ng
(eg, eb|ng) = PEg|Ng

(eg|ng)PEb|Ng
(eb|ng), (6)

where individual distributions are simply given by

PEc|Nc
(ec|nc) =

(
nc
ec

)
εecc (1− εc)nc−ec c ∈ {g,b}. (7)

Theorem 2: When ties are treated as errors, the probability
of decoding failure for a length-N uniform random code with
M codewords, conditioned on the number of symbol errors in
each state and the channel state type, Pf|Ng,Eg,Eb

(ng, eg, eb),
is given by

1−

1− 2−N
∑

M(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)M−1

. (8)

where M(d) is the set of pairs (ẽg, ẽb) ∈ {0, . . . , N}2 that
satisfy γẽg + ẽb ≤ d. This holds with γ = ln εg−ln(1−εg)

ln εb−ln(1−εb) for
the ML decision rule, and with γ = 1 for the MD decoder.

Proof: First, we revisit the ML decoding rule for the
Gilbert-Elliott channel when channel state information is avail-
able at the receiver. Given the state occupation ng, we have

PY|X(y|x) = PYg|Xg
(yg|xg)PYb|Xb

(yb|xb)

= εegg (1− εg)ng−egεebb (1− εb)nb−eb .

Upon receiving word Y, the ML decoder returns the codeword
X that maximizes lnPY|X(y|x). Thus, a little algebra shows
the decoded message will be

arg min
x∈C

[γeg(x) + eb(x)], (9)

where eg(x) = dH(xg,yg) and eb(x) = dH(xb,yb) are
realizations of Eg and Eb, respectively. This argument is used
to demonstrate the dependency on x. Notice that the term
ng ln(1−εg)+nb ln(1−εb) in lnPY|X(y|x) does not change
the ML decision.

Next, we consider the probability of failure for the decoding
rule given in (9) when random codes are used. In our system,
decoding succeeds if and only if the correct codeword is
returned as the unique minimizer in (9). The failure probability
found in (8) can be obtained in a few steps. By symmetry,
we can assume that the transmitted codeword x is the all-
zero codeword. The other M − 1 codewords are drawn
independently and uniformly. For any received vector y that
satisfies Eg = eg and Eb = eb, decoding succeeds when
every other codeword produces a strictly larger value for the
cost function in (9). A straightforward combinatorial argument
shows the number of codewords with cost less than or equal
to the correct codeword is given by

V (ng, nb, eg, eb) =
∑

(ẽg,ẽb)∈M(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)
. (10)

The probability that a uniformly chosen random vector falls
in this set is q = V (ng, nb, eg, eb)/2N . Since codewords are
independent, the failure probability is equal to 1−(1−q)M−1.

One can infer from (9) that, for the ML decision rule, errors
in the bad state do not affect performance as much as errors in
the good state. This is because the decoder gives more weight
to symbols that are received while the channel is in its good
state, as they are deemed more reliable. The MD decoder, on
the other hand, only considers the total number of errors within
a block, irrespective of the state they occur in. That is, errors
in either state cost the same and γ = 1. The terms over which
the sum is taken need to be modified accordingly.

In view of Theorem 2, one can substitute the appropriate
expressions for decoding performance into (5) to get overall
probabilities of decoding failure. As a side note, Vander-
monde’s convolution identity implies that

eg+eb∑
ẽg=0

eg+eb−ẽg∑
ẽb=0

(
ng
ẽg

)(
nb
ẽb

)
=

eg+eb∑
j=0

(
N

j

)
,

and therefore the volume expression in (10) for MD decoding
(γ = 1) reduces to the volume computation associated with
the binary symmetric channel. Finally, we note that∑
M(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)
+

∑
M̄(γeg+eb)

(
ng
ẽg

)(
nb
ẽb

)
= 2N ,

where M̄(c) is the set of pairs (ẽg, ẽb) ∈ {0, . . . , N}2 that
satisfy γẽg + ẽb > c.

B. BCH Coding with Bounded Distance Decoding

In this section, we present a more pragmatic facet of
our inquiry. We consider a primitive binary BCH code of
minimum distance dmin, which is capable of correcting up
to t =

⌊
dmin−1

2

⌋
errors. This entails having N = 2m−1, with

m ≥ 2, and a single optimal K for each dmin [38, p. 486].
We analyze the queueing behavior of the system in terms of
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the block length N and the code rate R = K/N . The goal
is to characterize the performance over admissible parameters.
At the receiver, the bounded distance decoder either declares
a decoding success, or it detects a failure and requests a
retransmission. It is important to emphasize that, when the
number of errors is greater than t, the decoder may be subject
to an undetected error. We discuss this issue in greater depth
in Section VI.

For the binary symmetric channel, the conditional probabil-
ity of failure in (3) is equal to Pf|E(e) = 1{z∈Z|z>t}(e), where
1A(·) is the standard indicator function of the set A. Similarly,
for the Gilbert-Elliott case, the average failure probability is
given by

Pf =
∑

c,d∈{g,b}

PC1
(c)Pf,CN+1|C1

(d|c)

=
∑

c,d∈{g,b}

PC1
(c)

N∑
e=1

PE,CN+1|C1
(e, d|c)Pf|E(e),

where Pf|E(e) appears above. The expected success probabil-
ity can be computed in an analog fashion, albeit replacing
Pf|E(e) by 1 − Pf|E(e). The average service rate can be
expressed as µN = ρrPs packets per codeword transmission,
thereby implicitly setting a bound for system stability.

The encoding/decoding schemes considered in this section
are permutation invariant. Hence, the decoding quality is only
determined by the number of symbol errors in each state
within a codeword and not by their order or locations. The
introduced methodology herein, can be applied to other per-
mutation invariant encoding/decoding schemes for the analysis
of decoding failure probability.

VI. UNDETECTED ERRORS

A serious issue with pragmatic communication systems is
the presence of undetected decoding failures. In the present
setting, this occurs when the receiver uniquely decodes to
the wrong codeword. For delay-sensitive applications, this
problem is especially important because recovery procedures
can lead to undue delay. To address this issue, we apply stan-
dard techniques that help control the probability of admitting
erroneous codewords [39], [40]. This, in turn, leads to slight
modifications to the performance analysis presented above.
The probability of undetected failure is a system parameter
that must be set during the design phase of the system.

A. Random Coding with ML/MD Decoding

Under our aforementioned scheme, information is sent over
the channel and the decoder reports the codeword with the
minimum (weighted) distance to the received vector, as seen
in (9). To reduce the probability of undetected error, we
revisit the technique established in [39] regarding the error
exponents, and introduce a safety margin ν. This scheme and
its ramifications are easiest to explain for the binary symmetric
channel. Recall that, for this simpler channel model, the ML
and MD decision rules coincide. Suppose that dH(x̂,y) = ê,
where x̂ is the closest codeword to received vector y. The
enhanced decoder only returns x̂ when the distance between

y and the next closest codeword is greater than ê+ν. If another
codeword is present within distance ê + ν, then the receiver
declares a decoding failure.

As before, let e denote the distance between the sent
message and the received vector. The performance associated
with this procedure can be characterized by considering balls
of radii e−ν, e, and e+ν centered around the received vector.
Notice that, by construction, the transmitted codeword always
lies in the last two balls. To analyze the system, consider the
list of all codewords contained in the ball of radius e + ν. If
there is exactly one codeword on this list, it must be the correct
one and it is returned successfully by the decoder. On the other
hand, if there are more than one codeword on the list, then a
decoding failure (detected or undetected) will occur. One can
write the probability of this event as

Pf|E(e) = 1−

(
1− 2−N

e+ν∑
i=0

(
N

i

))M−1

. (11)

A detected failure takes place when the decoder elects not
to output a candidate codeword. The problem is setup so
that the correct codeword is always on the list. As such, an
undetected failure can only occur when there is at least one
other candidate inside the ball of radius e− ν. Note that this
condition is necessary, but not sufficient; multiple incorrect
candidates can be found in proximity of the received vector
in such a way that a failure is reported. If there are only two
codewords in the ball of radius e and one of them is inside the
ball of radius e − ν, then the decoder will necessarily return
the incorrect one. If there are more than two codewords with
the ball of radius e, then detected and undetected failures can
occur, although for well-designed systems such events are very
rare. Collecting these observations, we can derive an upper
bound for the probability of undetected failure,

Pue <

N∑
e=0

(
N

e

)
pe(1− p)N−e

×

1−

(
1−

∑e−ν−1
i=0

(
N
i

)
2N

)M−1
 . (12)

It may be instructive to point out that ties between the closest
codewords are always treated as detected failures. Also, the
probability of undetected failure decreases rapidly as ν gets
larger. Thus, by choosing an appropriate value for ν, one can
manage the level of undetected failures and hence make the
decoding process more robust, at the expense of a higher
overall probability of failure. Lastly, since the probability of
undetected failure is typically much smaller than the proba-
bility of detected failure, we can upper bound the latter by Pf

with a negligible penalty.
Much of the intuition developed under the binary symmetric

channel applies to the Gilbert-Elliott model, with one impor-
tant distinction related to weighted distance. Indeed, for this
more elaborate finite-state channel, the ML decoder picks the
codeword that minimizes the weighted distance found in (9),
γeg(x) + eb(x). Suppose that B is the minimum weighted
distance between the received vector and a codeword, and let
C be the weighted distance associated with the transmitted
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codeword. To deal with the probability of undetected failure,
the decoder declares a failure if there is another codeword of
weighted distance at most B+ν. Otherwise, the best candidate
codeword is returned.

Similar to the BSC case, performance can be analyzed by
considering three balls, with respect to weighted distance, of
radii C−ν, C, and C+ν centered around the received vector.
Again, the transmitted codeword always resides in the last two
balls. If there are multiple codewords on the list of codewords
in the ball of radius C+ν, then a decoding failure will occur.
This happens with probability

Pf|Ng,Eg,Eb
(ng, eg, eb)

= 1−

1− 2−N
∑

M(γeg+eb+ν)

(
ng
ẽg

)(
nb
ẽb

)M−1

.

The joint probability of decoding failure and ending in
state CN+1, conditioned on starting state C1, denoted
Pf,CN+1|C1

(d|c), is upper bounded by

P̄f,CN+1|C1
(d|c)

=

N∑
ng=0

ng∑
eg=0

nb∑
eb=0

(
ng
eg

)(
nb
eb

)
εegg (1−εg)ng−egεebb (1−εb)nb−eb

× Pf|Ng,Eg,Eb
(ng, eg, eb)PNg,CN+1|C1

(ng, d|c).
(13)

In a similar fashion, the joint probability of undetected failure
accounting for boundary states, Pue,CN+1|C1

(d|c), is upper
bounded by

P̄ue,CN+1|C1
(d|c)

=

N∑
ng=0

ng∑
eg=0

nb∑
eb=0

(
ng
eg

)(
nb
eb

)
εegg (1−εg)ng−egεebb (1−εb)nb−eb

× Pue|Ng,Eg,Eb
(ng, eg, eb)PNg,CN+1|C1

(ng, d|c),
(14)

where Pue|Ng,Eg,Eb
(ng, eg, eb) is equal to

1−

1− 2−N
∑

M(γeg+eb−ν)

(
ng
ẽg

)(
nb
ẽb

)M−1

.

As before, the probability of undetected decoding failure
diminishes as ν increases. Also, for most systems, the prob-
ability of detected failure is well approximated by the upper
bound Pf,CN+1|C1

(d|c) because undetected failures are very
unlikely.

B. BCH Codes with Bounded Distance Decoding

Our BCH codes are decoded using bounded distance de-
coding. It is possible to devise a safety margin and thereby
reduce the probability of undetected decoding failures in
this setting as well. In this case, an undetected error occurs
when the received vector lies in the decoding region of an
incorrect codeword. Therefore, shrinking the decoding regions
of admissible codewords can prevent undetected failures. Let
ν denote the size of the safety margin, and assume that

the desired error-correcting capability of the code is t − ν
errors, where t is defined in Section V-B. Under this slight
modification, the decoder can detect up to t+ν symbol errors.

We assume that a codeword is mapped to the channel
using a uniform random interleaver and, as such, all error
patterns consisting of e errors are equally probable [23]. This
introduces a symmetry in the problem that facilitates analysis.
Without loss of generality, one can assume that the zero
codeword is transmitted to the destination. For this situation,
an undetected error occurs whenever the Hamming distance
between the received word and a nonzero codeword is less
than t− ν.

We consider the performance of this scheme for the binary
symmetric channel first. In [41], the probability of undetected
error for bounded distance decoding is computed. Using the
enhanced detecting radius t + ν (instead of t), we can write
Pue =

∑N
e=t+ν+1W (e)PE(e), where W (e) denotes the

conditional decoder failure probability defined as the ratio of
the number of weight e error patterns lying within distance
t − ν from a codeword over the total number of weight e
words in the entire space. This can be written as

W (e) =

∑t−ν
j=0

∑e+j
l=e−j Al

(
N−l

(j+e−l)/2
)(

l
(j−e+l)/2

)(
N
e

) , (15)

where Al denotes the number of weight l codewords in a BCH
code space, designed to correct up to t =

⌊
(t−ν)+(t+ν)

2

⌋
errors

where (t − ν) + (t + ν) = dmin − 1. In other words, we use
the weight distribution of a t error-correcting BCH code in
our decoder design; however, by using the lower t − ν error
correcting capability and t + ν error detecting capability, we
get better performance in terms of undetected errors.

Still, a main issue with this expression is that the weight
distributions for most BCH codes are not known. Furthermore,
when an expression is known [42], it may be too complicated
to integrate into our analysis. Nevertheless, one can approxi-
mate the weight distribution of a binary primitive BCH code
of length N = 2m − 1 and designed distance dmin = 2t+ 1,
where 2t − 1 < 2dm/2e + 1, by a binomial-like distribution
as [41],

Al =


1, l = 0

0, 1 ≤ l < dmin

2−mt
(
N
l

)
(1 + El), dmin ≤ l ≤

⌊
N
2

⌋
AN−l,

⌊
N
2

⌋
≤ l ≤ N

(16)

where El is an error term in the approximation of the weight
distribution of the BCH code by a binomial distribution. It
has been shown that for moderately large block lengths, El
is negligible. Consequently, W (e) is well approximated by
2−mt

∑t−ν
j=0

(
N
j

)
. As a result, the probability of undetected

error is approximately

Pue ≈ 2−mt
t−ν∑
j=0

(
N

j

) N∑
e=t+ν+1

PE(e).
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This interpretation generalizes to the Gilbert-Elliott channel,
and the conditional probability of undetected error is equal to

Pue,CN+1|C1
(d|c) =

N∑
e=t+ν+1

W (e)PE,CN+1|C1
(e, d|c),

where c, d ∈ {g,b} and W (e) is unchanged from (15). Similar
to the BSC case, this function is well approximated by

2−mt
t−ν∑
j=0

(
N

j

) N∑
e=t+ν+1

PE,CN+1|C1
(e, d|c).

This result is supported through numerical simulations.

VII. PERFORMANCE EVALUATION

In this section, we evaluate our proposed methodology using
traffic parameters based on a voice over IP (VoIP) application
for an EVDO system, a 3G component of CDMA2000 [43].
This system offers an uplink sector capacity of 500 Kb/s with
16 active users per sector [44]. For a VoIP system with more
users and lower per-user rates, this is somewhat optimistic. As
such, for illustrative purposes, we choose a total uplink rate
of 460 Kb/s per sector; this gives a rate of Rb = 28.75 Kb/s
for each active user.

The enhanced variable rate codec (EVRC) used by
CDMA2000 systems, features four distinct frame types cor-
responding to different bit-rates: full rate gives 171 bits, 1/2
rate gives 80 bits, 1/4 rate gives 40 bits, and 1/8 rate gives
16 bits. Hereafter, we adopt the rough estimates of the relative
frequencies for the speech coder states published in [43].
Moreover, as the header size for voice packets are usually very
large relative to the voice payload, we assume that ROHC
compression is employed to reduce overhead to four bytes.
Under these parameters, the average size of a voice packet
becomes 1/ρ =

∑
i fi(li + overhead) = 88.55 bits, where fi

is the relative frequency of state i and li denotes the frame
size for the same state. The number of header bits in every
segment is set to h = 2. Throughout the numerical evaluation,
packets are assumed to arrive according to a Poisson process
with λ = 50 packets per second and we receive an average of
50/Rb packets/channel use.

The choice of a Poisson arrival process (or MMPP) allows
us to make fair comparisons between codes with different
block lengths. In particular, the rate λ in packets per channel
use is fixed, and arrivals in the queue correspond to the number
of packets produced by the source during the transmission time
of one codeword. The marginal distribution of the sampled
process is also Poisson with arrival rate λN , in packets per
codeword. Given this framework, a prime goal is to minimize
the tail probability of the queue over possible values for
parameters N and K.

One drawback associated with our closed-form approach
is that handling undetected block errors in a realistic manner
(e.g., via late detection when the packet CRC fails) is not
possible. Therefore, to facilitate the analysis, we assume
the presence of a genie that informs the receiver when an
undetected block decoding error occurs. Still, we require that
the system maintain a probability of undetected error less

than some threshold, and we disregard (N,K) parameter
pairs that violate this constraint. Then, we evaluate the tail
probability of the queue (the probability that the number
of packets in the queue exceeds a prescribed threshold τ )
over all admissible values of N , K, and ν satisfying the
undetected error probability constraint. More precisely, we
perform a two-stage procedure. During the initial phase,
the algorithm finds the smallest admissible integer ν cor-
responding to each pair (N,K), subject to the prescribed
upper bound on Pue(N,K, ν). Once this is accomplished,
the tail probability of the queue

∑∞
i=2τ+1 π(i) is evaluated

for different (N,K) pairs using the optimum value of ν
found in the previous step. We emphasize that distribution
{π(i)} is an implicit function of ν(N,K) and Pf(N,K, ν).
To perform this procedure, we first evaluate the undetected
error probabilities for different rates and ν = 0. In many
cases, ν = 0 satisfies the constraint. For rates with high
probabilities of undetected error, we increase ν progressively
as to reduce the corresponding probabilities of undetected
failure. We stress that this necessarily increases the overall
probability of decoding failure, as seen in (11)–(14). Since
we are interested in keeping the latter probability as small as
possible, we raise ν until the undetected-error requirement is
met and then stop. The proper value of ν is generally very
small, which makes the task fast and convenient. Note that
the initial phase of the procedure can be carried out offline
beforehand, whereas the parameters of the coding scheme can
be selected based on the current system conditions. Values of
N and K for which this procedure gives poor performance
are ignored.

For illustrative purposes we present the curves correspond-
ing to the tail probability of the queue versus the code rates, for
various block lengths. This helps to understand the significant
effect of the code parameters on the queueing performance and
illustrates how the tail probability behaves as N and K change.
Furthermore, these curves reveal the existence of an optimal
code rate associated to each block length, and an optimal
block length over all possible code lengths. As such, one
can select the (N,K) pair which results in the best queueing
performance.

While numerically evaluating our proposed methodology,
we consider two cases: random coding with ML decoding over
the BSC, and BCH coding with bounded distance decoding
over Gilbert-Elliott channel. The concise size of this survey is
due, primarily, to space limitations. Nonetheless, we believe
that the insights offered by these two cases are applicable to
other scenarios as well.

A. Random Codes over the Binary Symmetric Channel

Let the channel bit error rate be p = 0.1, which yields a
capacity of C = 0.531 bits per channel use, and suppose that
the constraint on Pue(N,K, ν) is 5 × 10−5. We know that
increasing code rate R for a fixed block length decreases re-
dundancy and therefore reduces the error-correcting capability
of the code. Thus, the probability of decoding failure found
in (3) becomes larger. At the same time, changes in code rate
affect ρr, the probability with which a codeword contains the



11

20 40 60 80 100 120 140 160
10−3

10−2

10−1

100
Ta

il
pr

ob
ab

ili
ty

Pr
(Q

>1
0)

N = 50

N = 70

N = 100

N = 130

N = 150

N = 180

N = 200

N = 220

N = 250

N = 280

N = 310

Information Bits per Block (Segment Length), K

Fig. 6. Probabilities of buffer overflow for random codes over the BSC as
functions of K, subject to constraint Pue ≤ 5× 10−5.

last parcel of information of a packet. As this rate varies, these
two effects alter the transition probabilities and, hence, the
stationary distribution of the Markov chain in opposite ways.

Figure 6 shows the complementary cumulative distribution
functions evaluated at τ = 10 packets as functions of K. For
each (N,K) pair, ν has been chosen to satisfy the undetected
error probability constraint, following the steps outlined above.
Each curve corresponds to a different block length and, as
seen on the graph, there is a natural tradeoff between the
probability of decoding failure and the payload per codeword.
For a fixed block length, neither the smallest segment length
nor the largest one delivers optimal performance. Moreover,
block length must be selected carefully; longer codewords do
not necessarily yield better queueing performance. For our
system, optimal parameters are close to (N,K) = (150, 51),
for which, the probability of undetected error is 3.67× 10−5,
and ν = 4.

B. BCH Codes over the Gilbert-Elliott Channel

The parameters of our Gilbert-Elliott model are selected
loosely based on QPSK modulation, a vehicular speed of
20 mph, and a carrier frequency of 2.1 GHz. This gives a
normalized Doppler frequency of fDTs = 0.00082, where
fD represents the Doppler frequency and Ts = 2/Rb is
the symbol transmission time. Setting the SNR threshold for
transitions between the good and bad states to a common value
of γth = 2 dB and the average received SNR to γ̄ = 15 dB, we
can apply the formulas given in [31] and get model parameters

α =
ρfDTs

√
2π

eρ2 − 1
= 0.3938 β = ρfDTs

√
2π = 0.0202

where ρ = 10(γt−γ̄)/20. The probabilities of error in the good
and bad states are chosen to be

εg =
α+ β

α

∫ ∞
γth

fΓ(γ)Pe−QPSK(γ)dγ = 0.0097,

εb =
α+ β

β

∫ γth

0

fΓ(γ)Pe−QPSK(γ)dγ = 0.3713,

where fΓ(·) is the probability distribution of the received SNR
and Pe−QPSK(γ) = 1 − (1 − Q(

√
γ))2 is the probability of

symbol error for QPSK modulation.
This time, we require that the system features a probability

of undetected error no greater than 10−5. Recall that, for a
specific (N,K)-BCH code, we can tradeoff the probability of

(a)

0 50 100 150 200 250 300
10−3

10−2

10−1

100

Ta
il

pr
ob

ab
ili

ty
Pr

(Q
>5

)

N = 255

N = 127

N = 63

N = 31

N = 15

Information Bits per Block (Segment Length), K

(b)

0 20 40 60 80 100
10−3

10−2

10−1

100

Ta
il

pr
ob

ab
ili

ty
Pr

(Q
>5

)

N = 127

N = 63

N = 63 Sim.
N = 31

Information Bits per Block (Segment Length), K

Fig. 7. Probabilities of buffer overflow are displayed for various BCH codes
over Gilbert-Elliott channel; (a) when undetected errors are not considered
(ν = 0), (b) when the decoding radius in every case is adjusted to meet the
constraint on the probability of undetected error Pue ≤ 10−5.

misclassification and the ability to correct errors by changing
the value of ν. Hence, we evaluate the tail probability of the
queue over all admissible values of N , K, and ν satisfying
the undetected error probability constraint. To proceed, we
first evaluate tail probabilities for admissible values of N
and K, with ν = 0 (see Fig. 7(a)). Then, for the values of
K with high probabilities of undetected error, we increase
ν progressively as to control misclassifications and meet the
desired constraint. Again, values of N and K that lead to
inferior performance are discarded. For example, for N = 63,
the values of K = 30, 36, 39, 45 are the ones with high
probability of undetected error that are refined by increasing ν
(see Fig. 7(a)-(b)). The values of K greater than 45 associated
to N = 63 are ignored, since they result in poor performance
after meeting the constraint on the undetected errors. Interest-
ingly, for N = 63, K < 30, the constraint on the undetected
errors is met with ν = 0. Similar behavior is also observed
for other block lengths.

The results associated with this procedure, in terms of the
tail probability of the queue evaluated at τ = 5, are illustrated
in Fig. 7(b). Comparing this graph to Fig. 7(a), we gather that
decreasing the likelihood of undetected error increases the tail
probability of the queue. In fact, because this forces the system
to declare a detected error and request a retransmission more
often, packets leave the queue less frequently. Accordingly, the
probability that the buffer exceeds a certain threshold goes up.
Looking at Fig. 7(b), we see that the optimal code parameters
are (N,K) = (63, 36). The corresponding probability of
undetected error is 8.78× 10−6 and ν = 1. We note that the
tail probability for (N,K) = (127, 71) is close to this optimal
value. This alternate configuration features an undetected error
probability of 3.80×10−8, which is achieved with ν = 0. This
survey demonstrates the need to adjust the value of ν on a per
code basis. Moreover, the results suggest that the proper value
of ν is very small relative to N .

Plots corresponding to the average end-to-end delay (intro-
duced in Remark 1) are presented in Fig. 8, for the same
coding parameters as in Fig. 7(b). It appears that the tail
probability of the queue and the average end-to-end delay
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Fig. 9. Stability factors as functions of BCH code parameters; when this
factor exceeds one, the system is unstable.

behave similarly, and the average delay is minimized for the
same coding parameters. Indeed, the tail probability of the
queue provides a good measure of the system delay profile.

Figure 9 shows the stability factor for the (N,K) pairs
found in our previous graph. Systems for which λN/µN is
larger than one are unstable. We note that the tail probability
and average end-to-end delay are good predictors of stability.
In general, systems with small stability factors feature good
delay profiles as well.

Monte Carlo simulations provide additional empirical evi-
dence for our proposed methodology. This is especially im-
portant because our analysis assumes the existence of a genie
that reports undetected errors. To understand the effect of the
genie, we perform simulations with and without the genie.
As expected, the genie-aided simulation results match our
analysis almost perfectly. In the absence of a genie, we assume
that an undetected decoding error is eventually revealed by
the packet CRC. So long as the probabilities of undetected
error remain relatively small, our simulations without the
genie agree with both the coding and queueing performance
predicted by the analytical framework. For instance, Fig. 7(b)
superimposes simulation results for N = 63 without the genie
(dashed curve). The plotted curves in this case are nearly
indistinguishable.

Another important concern pertains to possible modeling
inaccuracies related to the traffic or the channel. To examine
such limitations, we carry Monte Carlo simulations for a
system with constant packet lengths, L = 90. Figure 10
demonstrates the results in terms of the complementary cumu-
lative distribution function (CCDF) of the queue occupancy
for N = 63 and different values of K. We compare the
results with those obtained for systems with geometric packet
distributions, matching the means. Not surprisingly, reducing
variations in the arrival process decreases the tail probability
of the queue. That is, it makes the probability of a long queue
very small. This behavior should be expected since fixing
the packet size precludes the arrival of a very long packet,
an event that exacerbates the distribution of the queue. In
other words, designing the system using a geometric packet
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Fig. 10. CCDF of stationary distribution of the queue length,
Pr(queue length > τ), is displayed for geometric and constant packet length,
N = 63. The tail probability of the queue for τ = 5, has been marked with
black squares in case of constant packet size.

distribution leads to a conservative performance assessment
compared to using a constant packet length. Empirically, the
system performs uniformly better in the latter case. In a similar
manner, smoothing the arrival process over time (e.g., periodic
arrivals) should lead to a better profile.

Performance prediction aside, our analytical framework
affords an efficient and accurate means of selecting system
parameters. For example, under stated channel conditions and
queueing objectives, the optimum values for N and K are the
same for constant and geometric packet length distributions.
Specifically, the minimum tail probability associated with the
abstract model is achieved at N = 63 and K = 36. Simulation
results with constant packet sizes lead to the same operating
point, although this latter approach is much more computa-
tionally demanding. Altogether, simulation results offer strong
support for the proposed methodology.

VIII. CONCLUSIONS

In this article, we introduce a novel framework to study
the queueing behavior of coded wireless communications
over finite-state error channels. Through this framework, the
decoding performance as well as queue occupation are math-
ematically characterized based on the random arrival profile,
fading channel behavior and correlated service events. Further,
it has been shown that there exist best encoding parameters in
terms of the probability of the queue exceeding a threshold,
and the average end-to-end delay. It is therefore advisable
to select the encoding scheme parameters based on the re-
quirements of the system. This is especially pertinent in the
context of delay-sensitive applications for which long block
lengths are inadequate. The proposed methodology applies to
both memoryless channels and channels with memory. Due
attention is given to undetected decoding failures, as they can
have a very detrimental impact on the operation of pragmatic
systems. By using a safety margin, one can limit the likelihood
of such events and thereby ensure adequate performance.

For illustrative purposes, a VoIP application is considered.
Channel parameters are derived from the CDMA2000 family
of 3G mobile technology standards. The proposed methodol-
ogy enables the numerical evaluation of the equilibrium queue
distribution. This, in turn, can be employed to compute the
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tail probabilities of the queue occupancy and, subsequently,
find the optimal operating point. Our framework supports
the rigorous comparison of coding schemes with different
block lengths and code rates. This study suggests that, for
fixed conditions, optimal system parameters are essentially
unaffected by small variations in the buffer overflow threshold.
The results and assumptions associated with our methodology
are supported by Monte Carlo simulations. This technique can
be employed to facilitate adaptive modulation schemes that
take into account both the channel profile and the requirements
of the underlying traffic. The task of finding the proper value
of safety margin can be carried out offline beforehand, whereas
the parameters of the coding scheme can be selected based on
current system conditions. Possible avenues of future research
include better accounting for feedback and extending this type
of analysis to multi-user environments.
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