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Abstract—The rapid proliferation of wireless devices offers
new means to infer current conditions surrounding mobile
users, their locations, and their actions. This is especially true
for industrial, scientific and medical (ISM) radio bands where
communication protocols are often open and information about
neighboring devices abounds. This article examines efficient
occupancy estimation based on Wi-Fi metadata, with an emphasis
on algorithms attuned to directional antenna technology. Certain
Wi-Fi interfaces can be switched into monitoring mode, an
operating state where all local packets are observed and recorded.
Using a network of such monitoring sensors, it is then possible
to estimate the number of active devices within a specific area.
The envisioned estimators take as input received signal strength
indicators and media access control addresses. By using direc-
tional monitoring antennas, one can gain additional and/or more
discriminating information about current conditions, thereby
yielding enhanced occupancy estimates. This work introduces
novel estimation algorithms and characterizes the performance
gains associated with RF-aware sensing devices. Experimental
results based on a prototype implementation of this distributed
monitoring system provide further supporting evidence for the
proposed techniques.

Index Terms—Occupancy estimation, maximum likelihood,
directional antennas, statistical information processing, commu-
nication systems.

I. INTRODUCTION

The advent of smartphones has changed the wireless land-
scape considerably. A growing mobile data traffic worldwide is
forcing service providers and users to leverage various modes
of connectivity. Cisco Systems predicts in their Visual Net-
work Index that 55 percent of total mobile data traffic will be
offloaded onto fixed networks through Wi-Fi access points and
femtocells by 2020 [1]. This translates into several exabytes
of mobile data passing through local area wireless networks.
A noteworthy aspect of Wi-Fi technology is the fact that
transmitted data packets can be captured passively and subse-
quently analyzed in a straightforward fashion. The existence
of application programming interfaces for monitoring wireless
traffic like pcap and WinPcap, and the availability of fully-
featured programs such as Wireshark and Kismet make traffic
analysis a straightforward task. This fact, combined with a very
large smartphone penetration rate and recurrent exchanges of
Wi-Fi data packets between smartphones and access points,
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offers novel and unique means to infer properties of the
physical world [2].

This situation has piqued the interest of researchers and
hobbyists alike, leading to a vast and growing body of lit-
erature on inference tasks based on wireless technology [3],
[4], [5], [6], [7]. The wardriving movement illustrates well
how Wi-Fi signals can be tied to physical locations. Radio
frequency (RF) signals have been employed as a basis for
self-localization, source localization, and the more intricate
problem of nodes identifying the structure of their own ad
hoc wireless network [8], [9], [10], [11], [12], [13], [14];
with applications ranging from robotics to location-based
advertising. In this article, we are interested in the related
problem of estimating room occupancy based on Wi-Fi ac-
tivity. Occupancy estimation based on wireless signals is the
focus of recent work [15], [16]. The estimates can be employed
in the contexts of building code compliance, smart homes with
HVAC management, and the assessment of emergency egress
from buildings [17], [18].

The ability of cyber-physical systems to conduct such
inference tasks is closely linked to their intrinsic character-
istics. Ongoing efforts in metrology illustrate well how the
design of sensing devices is connected to specific applica-
tion scenarios [19], [20]. In a similar fashion, the radiation
patterns of sensing antennas can play a determinant role in
parameter estimation based on RF monitoring. This fact is
well understood in the antennas and propagation community,
as it underlies much of the research work in antenna design
for radar, communication, and other applications. However,
the domain knowledge related to electromagnetics is yet to be
fully incorporated in the design and analysis of inference using
wireless systems. Indeed, RF antennas are often perceived
as a commodity and the potential impacts of their operating
characteristics are frequently overlooked in the communication
and signal processing literature.

While most consumer-based RF products are aimed at wire-
less communication, it is possible to design or carefully select
antennas specifically for sensing and monitoring. Furthermore,
with the emergence of reconfigurable antenna technology, a
monitoring system can dynamically adapt to changing environ-
mental conditions or an evolving system objective. The goal
of this article is to revisit occupancy estimation, albeit giving
due consideration to the radiation characteristics of the sens-
ing devices. Specifically, we are interested in estimating the
number of active wireless agents located within a prescribed
area using RF monitoring through multiple distributed agents.
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In the envisioned setting, the data acquired by these various
devices is aggregated over the Internet, and the inference task
is performed at a central location.

While producing occupancy estimates, the antenna radiation
patterns of the different agents can be integrated into the
inference task. Our analysis framework enables the study
of potential performance gains associated with the careful
analysis of RF signals. It also offers a novel perspective
on antenna selection for RF monitoring in the context of
occupancy estimation. Finally, it provides a means to better
understand antenna designs for inference tasks, and presents a
unique opportunity to study how reconfigurable antennas can
enhance the performance of monitoring systems. Altogether,
the article gives a new perspective on the interplay between
antenna design and RF monitoring over wireless networks with
distributed agents.

The remainder of this article is structured as follows.
The problem formulation is described in Section II. Three
estimation schemes are introduced in Section III. Performance
results corresponding to the proposed schemes for sensing
systems with isotropic and directional antennas appear in
Section IV. Experimental findings derived from a prototype
implementation are contained in Section V, along with a brief
description of our experimental setup. Insights, guidelines and
final remarks conclude this article.

II. PROBLEM FORMULATION

Consider a prescribed neighborhood of interest with a set
geometric shape. For simplicity, we take this region to be
rectangular. Several RF monitoring devices are located about
this area, in an arbitrary fashion. Each monitoring device is
aware of its own location and orientation, and it knows the
radiation pattern of its antenna. In the proposed framework,
the monitoring devices are connected to the Internet through
a wireline infrastructure, and they are relaying sampled data
to a central entity where data is aggregated for analysis. In
addition, several wireless agents are randomly located within
this environment. Each agent can lie inside or outside an area
of interest. We use At to denote the target area and Ao to
indicate its complement. All the wireless agents periodically
transmit data packets, thereby revealing partial information
about their existence and whereabouts to monitoring devices.
Every agent uses a unique MAC address and, consequently, the
packets associated with separate devices can be differentiated.
Thus, using MAC addresses, it is possible to count the total
number of active agents recorded by monitoring devices,
although their precise locations remain unknown. A notional
diagram of the problem formulation appears in Fig. 1.

In this study, we assume that the wireless users are quasi-
static and an inference task is performed over a single mon-
itoring period. Although it is possible to incorporate moving
agents and streaming observations into the problem formu-
lation, these features render the analysis more challenging
and they are not necessary to achieve our goal of better
understanding the interplay between antenna profiles and RF
monitoring. As such, advanced mobility models and their
ramifications are relegated to future work in favor of a simpler,

At

Ao

Fig. 1. This notional diagram illustrates the inference task, with the periphery
of target area delineated by the dashed line. Hexagons denote the locations
of monitoring devices equipped with directional antennas. Agents within the
zone of interest are in black, whereas outside agents appear as circles. The
objective is to estimate occupancy within the target area.

explicative model suited to our main purpose. For convenience,
the random locations of the wireless devices are aggregated
into a single vector, U = (U1, . . . ,Una). Wireless agents
are equipped with vertically polarized, isotropic antennas.
The power radiated by one agent is therefore uniform in
all directions on the plane. The transmit power for every
mobile agent is known and equal to the limit prescribed
by the Federal Communications Commission (FCC) for the
industrial, scientific and medical (ISM) radio bands.

For the purpose of analysis, we assume that the energy
captured by a monitoring device comes primarily from a line-
of-sight path. Over short distances, the signal strength of the
electromagnetic wave coming from this agent is governed by
the free-space path loss. The received signal strength from
source j to sensing unit i can be expressed as

Pij[dBm] = A+B log10(dij) + Lij +Gi(φij) (1)

where A and B are the mean decay parameters, dij represents
the Euclidean distance between the source and the measure-
ment device, Lij denotes shadow fading, and Gi(·) is the
antenna gain of the sensing unit. Explicitly, suppose that the
sensing agent is located at point si = (s1i, s2i) and the signal
originates from uj = (u1j , u2j); then, the distance between
the two points is equal to

dij = d(si,uj) = ‖uj − si‖2

=
√

(u1j − s1i)2 + (u2j − s2i)2.

Likewise, the angle of incidence of the electromagnetic wave
onto the sensing unit is given by

φij = ∠(si,uj) = atan2(u2j − s2i, u1j − s1i),

where atan2(·, ·) is the two-argument variant of the arctangent
function. The antenna gain Gi(·)[dB] may depend on the
antenna characteristics of device i, its current orientation, the
angle of incidence of the incoming signal, and its polarization.

The shadow fading components {Lij} are assumed to form
a set of independent and identically distributed random vari-
ables, each with a log-normal distribution. In the logarithmic
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domain, the probability density function common to all fading
components, {Lij}, is

fLij (`) =
1√

2πσs

exp

(
− `2

2σ2
s

)
(2)

where σs is the logarithmic standard deviation of the shadow
fading, expressed in natural units.

The observed information available at the fusion center for
the purpose of inference takes the form of a sequence of
vectors P = (P1, . . . ,Pna), with each information vector
corresponding to a particular mobile agent. The length of
vector element Pj corresponds to the total number of sensing
devices monitoring the field of interest. Its entries are the
signal strengths captured by the sensors, Pj = (P1j , . . . , Pnsj)
where ns is the number of monitoring devices. The fusion
center possesses side information in the form of the locations
of sensing devices, their orientations and antenna properties.

The number and locations of the wireless units contained
within the region of interest is assumed to form a Poisson
point process with intensity λt. If we denote the number of
active devices that lies therein by Rt, we get

Pr(Rt = rt) =
(λtAt)

rt

rt!
e−Atλt rt = 0, 1, . . .

where At represents the area of the target region At. Similarly,
the device count and their locations outside of the zone of
interest is taken to be a Poisson point process with intensity
λo. The distribution of Ro, the number of devices outside the
target region is

Pr(Ro = ro) =
(λoAo)ro

ro!
e−Aoλo ro = 0, 1, . . .

where Ao is the area of the surveyed neighborhood, excluding
the target region At. Note that Rt and Ro can be determined
from the locations of the agents and, as such, it is sometimes
useful to think of them as functions of U. The inference tasks
at hand consist in estimating model parameters and occupancy
based on the information collected by the monitoring sensors.

III. ESTIMATION SCHEMES

In this section, we introduce estimation schemes tailored to
different application scenarios. The suitability of a particular
estimator depends on the amount of side information avail-
able at the fusion center. In situations where the monitoring
system is employed repetitively to estimate the occupancy
of a prescribed area, prior parameters can be formed and
the Bayesian framework applies. On the other hand, if the
system is deployed in a new environment and used once,
a classical formulation may be more appropriate. This will
become manifest shortly. The development of these estimation
schemes necessitates extra notation. Whenever appropriate,
we use uppercase letters for random variables and lowercase
letters for realizations or arguments.

A. Bayes Estimation of Occupancy

The Bayes estimation framework assumes that parameters
λt and λo are known. As such, the corresponding Poisson

distributions act as prior probabilities for the numbers of units
within and outside the target area, respectively. Our goal is to
estimate the number of active units located within the target
area based on observed data P. A first step in deriving this
estimator is to get the posterior distribution of Rt, conditional
on the gathered data,

Pr
(
Rt = rt|P = p

)
=

∫
u

1{Rt(u)=rt}fU|P
(
u|p
)
du

=

∫
{u:Rt(u)=rt,Ro(u)=ro}

fU|P
(
u|p
)
du

=

∫
{u:Rt(u)=rt,Ro(u)=ro}

fP|U
(
p|u
)
fU(u)

fP
(
p
) du

(3)

where U represents the random positions of the wireless units
and 1{·} is a shorthand notation for the standard indicator
function. The first equality in (3) is based on the fact that the
probability of an event can be expressed as the expectation of
an indicator function.

The collection of device locations contains much informa-
tion about the problem at hand. For instance, the size of U
is equal to the number of active wireless agents. Moreover, it
is possible to extract from U the numbers of units within the
target area Rt (U), and the number of units outside the target
areas Ro (U). These implicit relations delineate the regions
over which the multi-dimensional integrals in (3) are taken.

Because the two Poisson point processes are independent,
the distribution of U can be written as

fU(u) =
1

A
Rt(u)
t

(λtAt)
Rt(u)

(Rt(u))!
e−Atλt

× 1

A
Ro(u)
o

(λoAo)Ro(u)

(Ro(u))!
e−Aoλo

=
λ
Rt(u)
t

(Rt(u))!

λ
Ro(u)
o

(Ro(u))!
e−Atλt−Aoλo .

(4)

The distribution of the received power from an agent standing
at a specific location is obtained based on the description
contained in Section II. For instance, the distribution of the
power vector Pj associated with agent j, conditional on unit
location Uj = uj , is equal to

fPj |Uj
(pj |uj)

=

ns∏
i=1

fLij (pij −A−B log10(dij)−Gi(φij))

=
1

(2πσ2
s )

ns
2

ns∏
i=1

e
−

(pij−A−B log10(dij)−Gi(φij))
2

2σ2s

=
(
2πσ2

s

)−ns
2 e
−
∑ns
i=1

(pij−A−B log10(dij)−Gi(φij))
2

2σ2s .

(5)

The conditional distribution for the gathered data P, given
U = u, is the product of the marginal distributions

fP|U
(
p|u
)

=

na∏
j=1

fPj |Uj
(pj |uj).

At this point, we can revisit (3), the conditional distribution
of Rt given the received signal strength readings. Substituting
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the marginal distribution of U introduced in (4) and the
product form for the conditional distribution of P given U
shown above, we get

Pr
(
Rt = rt|P = p

)
=

∫
{u:Rt(u)=rt,Ro(u)=ro}

fP|U
(
p|u
)
fU(u)

fP
(
p
) du

=

∫
{u:Rt(u)=rt,Ro(u)=ro}

na∏
j=1

fPj |Uj
(pj |uj)

fP(p)

× λ
Rt(u)
t

(Rt(u))!

λ
Ro(u)
o

(Ro(u))!
e−Atλt−Aoλodu.

Introducing a convenient notation for pertinent integrals, we
obtain the desired form for the posterior distribution of Rt,

Pr
(
Rt = rt|P = p

)
=

∑
{I⊂[na]:|I|=rt}

λrtt λ
ro
o e
−Atλt−Aoλo

rt!ro!fP(p)

×
∏
j∈I
IAt

(j)
∏
j∈Ic
IAo

(j)

(6)

where the integral components are defined by

IAt
(j) =

∫
At

fPj |Uj
(pj |uj)duj (7)

IAo
(j) =

∫
Ao

fPj |Uj
(pj |uj)duj . (8)

Throughout, we use the popular notation [na] to denote
{1, . . . , na}, the set of natural numbers from one to na.

Equation (6) offers an algorithmic blueprint to compute
the conditional distribution of Rt. The integrals in (7) and
(8) are taken over structured two-dimensional sets. They
pose no particular computational challenge, and the numerical
evaluations can be parallelized to take advantage of modern
computer architectures. Furthermore, the calculated values can
be leveraged to compute the marginal distribution of P,

fP
(
p
)

=

∫
{u:Rt(u)+Ro(u)=na}

fP|U
(
p|u
)
fU(u)du

=
∑

(rt,ro):rt+ro=na

∑
{I⊂[na]:|I|=rt}

λrtt λ
ro
o

rt!ro!
e−Atλt−Aoλo

×
∏
j∈I
IAt(j)

∏
j∈Ic
IAo(j).

(9)

As mentioned above, evaluating the collection of integrals
{IAt(·), IAo(·)} is not a particularly difficult task, and its
computational complexity grows linearly with na. Computing
the conditional distribution of Rt given P, which appears
in (6), and the closely related quantity fP

(
p
)

may appear
more difficult, as it entails taking sums over subsets of [na].
However, while the cardinality of the power set of [na] grows
exponentially fast, the posterior distribution of Rt can be
computed efficiently using generating functions [21]. Thus,
for practical values of na, getting the conditional distribution
is manageable.

Once the posterior distribution of Rt conditional upon P is
obtained, its mean can be employed as an estimate,

R̂t

(
p
)

= E
[
Rt|P = p

]
=

na∑
rt=0

rt Pr
(
Rt = rt|P = p

)
.

(10)

To characterize the performance of Bayes estimators, we adopt
the Bayesian mean squared error (BMSE),

BMSE
[
R̂t

]
= E

[(
R̂t (P)−Rt

)2
]
. (11)

Numerically, the BMSE can be approximated through empir-
ical averaging over a large sample,

BMSE
[
R̂t

]
≈ 1

M

M∑
m=1

(
R̂

(m)
t

(
P(m)

)
−R(m)

t

)2

. (12)

It is well known that the mean of the posterior distribution
minimizes the BMSE [22], [23], [24]. In this framework,
the optimal estimator is thus given by (10). Based on this
result, we can evaluate the performance of our estimator for
different placements of the sensing devices s = (s1, . . . , sns

),
various antenna radiation patterns, and device orientations.
These characteristics implicitly shape the conditional distribu-
tions

{
fPj |Uj

(pj |uj)
}

, and they consequently impact overall
system performance.

B. Estimating Intensity Parameters

In the previous section, we assume that intensity parameters
λt and λo are available. Still, there exist scenarios where these
parameters are not known a priori. In such cases, it is possible
to produce estimates for these quantities based on the observed
data. This task forms the primary focus of this section. To
estimate the values of the intensity parameters, we embrace the
classical approach and adopt maximum-likelihood estimation
as a basis for statistical inference [24].

Again, let U represent the positions of all the wireless
units. As before, Rt and Ro can be obtained as functions
of U, and the size of U varies depending on the realization
of the process. The distribution of (4) still applies; yet to
conform with the classical statistical framework, we make the
dependence on the intensity parameters explicit,

fU (u;λt, λo) =
λ
Rt(u)
t

(Rt(u))!

λ
Ro(u)
o

(Ro(u))!
e−Atλt−Aoλo .

In the current model, P forms the observed data, U is
composed of unobserved latent variables, and parameters λt

and λo are the unknowns. The likelihood function for the latter
parameters is equal to

L
(
λt, λo;p,u

)
= fP,U

(
p,u;λt, λo

)
= fP|U

(
p|u
)
fU (u;λt, λo) .
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This, in turn, leads to the marginal likelihood of the observed
data found below,

L
(
λt, λo;p

)
=

∫
{u:Rt(u)+Ro(u)=na}

fP|U
(
p|u
)
fU (u;λt, λo) du

= e−Atλt−Aoλo

∑
(rt,ro):rt+ro=na

λrtt λ
ro
o

rt!ro!

×
∑

{I⊂[na]:|I|=rt}

∏
j∈I
IAt

(j)
∏
j∈Ic
IAo

(j).

(13)

The marginalization is performed through integration. Explicit
forms for the integral components IAt(j) and IAo(j) appear
in (7) and (8), respectively. Again, the high-dimensional
integral breaks down into products of two-dimensional inte-
grals. This renders the computational problem tractable. The
maximum-likelihood estimate for a set of observations p can
be obtained by performing a two-dimensional optimization
on the objective function in (13). Fortunately, this two-
dimensional optimization task reduces to a one-dimensional
problem. We present this property formally in the proposition
below.

Proposition 1: The likelihood function of the observed data
possesses the following property,

max
λt,λo

L
(
λt, λo;p

)
= max

α
L
(
na

At
α,
na

Ao
(1− α);p

)
. (14)

That is, the two-dimensional optimization simplifies to a
maximization over one variable.

Proof: See Appendix A.
In view of Proposition 1, the maximum-likelihood estimator

for (λt, λo) can be implemented by first solving the lower-
dimensional optimization problem and then extracting values
for parameters λt and λo. To further analyze this task, we
expand the objective function in terms of α,

L
(
na

At
α,
na

Ao
(1− α);p

)
=

∑
(rt,ro):rt+ro=na

e−nanna
a

rt!ro!

(
α

At

)rt (1− α
Ao

)ro
×

∑
{I⊂[na]:|I|=rt}

∏
j∈I
IAt(j)

∏
j∈Ic
IAo(j)

This objective function is a polynomial in a single indeter-
minate, and the maximization takes place over the compact
interval α ∈ [0, 1]. Although this problem does not appear to
admit a closed-form expression, obtaining a solution through
numerical methods is possible for systems with a realistic
number of active devices. One approach is to first compute the
derivative of the likelihood function, and then employ standard
means to identify the roots of the resulting polynomial. These
roots correspond to critical points of the likelihood function.
All the roots that fall within the interval [0, 1], along with the
boundary points α ∈ {0, 1}, can then be tested as candidate
maximizers. For typical values of parameters λt and λo,
this approach offers a pragmatic solution to the estimation

problem. In this setting, the mean squared error associated
with the estimation procedure becomes

MSE
[
λ̂t (P) , λ̂o (P)

]
= Eλt,λo

[(
λ̂t (P)− λt

)2

+
(
λ̂o (P)− λo

)2
]
.

After estimating the intensity parameters, a natural approach
to assessing the number of active units inside the target region
is to employ the technique discussed in Section III-A, albeit
with intensity estimates λ̂t and λ̂o;

R̂t

(
p
)

= Eλ̂t,λ̂o

[
Rt|P = p

]
=

na∑
rt=0

rt Pr
(
Rt = rt|P = p; λ̂t, λ̂o

) (15)

where the probability of Rt conditional on P = p is taken
under model parameters λ̂t and λ̂o.

C. Iterative Algorithm

The techniques introduced above constitute powerful tools
to estimate room occupancy and model parameters. Yet, when
the total number of active agents is large, these techniques
can become computationally challenging. To circumvent this
potential difficulty, we devise an iterative estimation strategy.
To begin, we emphasize that under the current model, a
stochastically equivalent way to obtain a realization is to
first generate the total number of active devices according to
Poisson distribution

Pr(Na = na) =
(Atλt +Aoλo)

na

na!
e−Atλt−Aoλo

and subsequently assign every device to areas At or Ao

through independent Bernoulli trials with probabilities

Pr (Uj ∈ At) =
Atλt

(Atλt +Aoλo)
= α (16)

Pr (Uj ∈ Ao) =
Aoλo

(Atλt +Aoλo)
= 1− α, (17)

respectively. This point of view relies on the splitting property
of Poisson processes [25]. From Proposition 1, we gather that
the maximum likelihood estimate for the rate of the aggregate
Poisson process invariably fulfills Atλt +Aoλo = na. It then
suffices to iteratively estimate α.

From the perspective of a single device, (16) and (17)
represent the prior probabilities of being within or outside the
target area. This same device can incorporate data vector Pj
gathered by the sensing agents and compute its own posterior
probabilities of being within or outside of the target area,

QAt(j) = Pr (Uj ∈ At|Pj = pj)

=
IAt

(j)α

IAt(j)α+ IAo(j)(1− α)

(18)

QAo(j) = Pr (Uj ∈ Ao|Pj = pj)

=
IAo

(j)(1− α)

IAt(j)α+ IAo(j)(1− α)
.

(19)

On the other hand, consider the reverse problem where every
unit is aware of whether it lies within or outside the target area,
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but model parameters are unknown. In this case, the system
can compute the number of devices within the target area rt

and the number of devices outside the area ro. Using this
information and the properties of the Poisson distribution, the
maximum likelihood estimates for α, λt, and λo become

α̂ =
rt

rt + ro
, λ̂t(rt) =

rt

At
, λ̂o(ro) =

ro

Ao
.

Based on these observations, it is possible to build an
iterative procedure akin to the expectation-maximization (EM)
algorithm that yields estimates for the unknown model param-
eters and area occupancy Rt. Initialization is derived from At,
Ao, and the number of active wireless units,

α̂(0) =
At

At +Ao
, λ̂

(0)
t =

naAt

At +Ao
, λ̂(0)

o =
naAo

At +Ao
.

After initialization, the algorithm seeks to find good estimates
by iteratively alternating between the following two tasks.

1) Expected Locations: During this step of the iteration,
we calculate the posterior probabilities that each wireless unit
lies within or outside the target area. Under assumed model
parameters λ̂(k−1)

t and λ̂(k−1)
o , these probabilities are

Q(k)
At

(j) = Pr
(
Uj ∈ At|Pj = pj ; λ̂

(k−1)
t , λ̂(k−1)

o

)
=

IAt
(j)α̂(k−1)

IAt
(j)α̂(k−1) + IAo

(j)
(
1− α̂(k−1)

) (20)

Q(k)
Ao

(j) = Pr
(
Uj ∈ Ao|Pj = pj ; λ̂

(k−1)
t , λ̂(k−1)

o

)
=

IAo
(j)
(
1− α̂(k−1)

)
IAt

(j)α̂(k−1) + IAo
(j)
(
1− α̂(k−1)

) . (21)

We note that, at this point, one can sum the posterior proba-
bilities and obtain the expected numbers of devices within and
outside the target areas.

2) Likelihood Maximization: Given the expected number
of active devices within and outside the target area, we can
update the estimated value of model parameter α,

α̂(k) =
1

na

na∑
j=1

Q(k)
At

(j) (22)

This, in turn, leads to intensity parameters

λ̂
(k)
t =

α̂(k)na

At
λ̂(k)

o =

(
1− α̂(k−1)

)
na

Ao
.

Although inspired by the expectation-maximization algo-
rithm, this iterative procedure is not an instance of this famed
algorithm [26]. Still, it is a valuable procedure to acquire
estimates for the intensity parameters. Convergence is an
important aspect of iterative schemes. For the method at hand,
this property is established below.

Theorem 1: The iterative algorithm defined by alternating
between Step III-C1 and Step III-C2 converges to a unique
stable fixed point for any initialization condition α(0) ∈ (0, 1).

Proof: See Appendix B.
The fact that this iterative algorithm converges irrespective

of α(0) ∈ (0, 1) is a highly desirable attribute. Still, the perfor-
mance of the algorithm depends on the ability of sensed signals
to discriminate between prospective locations. In cases where
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Fig. 2. This graph depicts normalized antenna radiation patterns for various
3 dB beamwidths. In all cases, the pointing direction is θ = 0◦ and the
nominal attenuation floor is Gfloor = 20 dB.

the resolution of the observed power is low, performance
may suffer. Having derived suitable estimators for our various
inference problems, we turn to performance analysis. We first
present simulation results based on our abstract model, and
then continue with empirical data obtained through testbed
implementation.

IV. NUMERICAL SIMULATIONS

In this section, we explore the potential benefits of direc-
tional antennas in the context of occupancy estimation. The
target area At is a square of dimension 6 m × 6 m inscribed
in a larger square of dimension 10 m × 10 m. The two squares
share a same center point, and the set difference between the
two geometric shapes corresponds to the outside area Ao, as
discussed in Section II.

Within our simulation framework, directional antennas are
defined using an established 3GPP antenna model [27]. Each
radiation pattern is characterized by a pointing direction of
maximum gain and a beamwidth. Mathematically, we have

Gi(φij) = −min

{
12

(
φij − θi
θ3dB

)2

, Gfloor

}
−Gavg

where θi ∈ (−180◦, 180◦], is the pointing direction (boresight)
of the antenna attached to unit i; θ3dB is the 3 dB beamwidth
of this radiation pattern in degrees; and Gfloor is a nominal
attenuation floor. The last variable Gavg is a normalization
factor that enables a fair comparison between distinct antennas.
The normalization constant, denoted Gavg, ensures that all
antennas radiate the same amount of power; its value is
proportional to the average antenna gain

10 log10

∫ 180

−180

10
− 1

10 min

{
12
(
φij−θi
θ3dB

)2
,Gfloor

}
360

dφij

 .

The antenna radiation patterns of candidate implementations
are shown in Fig. 2.
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The performance of an occupancy estimator is assessed
through repeated trials. Findings are reported for isotropic
antennas and for directional antennas with 3 dB beamwidth
θ3dB = 90◦, although general trends extend to other direc-
tional antennas. The sensing devices are located at the four
corners of the target area, and they are pointing towards
the common center of the squares. This configuration creates
discriminating patterns for the directional antennas. For every
active device located within the monitored area, a collection
of four received signal strength measurements is acquired, one
per sensing device. The aggregate information is subsequently
employed in the inference task.

We generate every realization of the occupancy estimation
problem as follows. Once λt and λo are set, the numbers of
devices within and outside the target area are established using
Poisson trials,

Rt ∼
(Atλt)

k

k!
e−Atλt Ro ∼

(Aoλo)
k

k!
e−Aoλo .

Each of the Rt = rt devices within the target area is assigned
a location according to a uniform distribution, independently
of other devices. Likewise, every device outside of the target
area is placed at a location according to a uniform distribution.
Altogether, this procedure yields U = u, the vector of
realized locations for the wireless units. The final piece of
randomness necessary to complete the trial is shadow fading.
The components {Lij = lij} are generated independently
following the log-normal distribution found in (2).

This information is subsequently transposed into the context
of distributed sensing systems. The locations of the monitor-
ing devices {si} along with their antenna radiation patterns
{Gi(·)} are leveraged to compute the realized sequence of
power vectors p = (p1, . . . ,pna), where vector pj and its
entries are computed according to (1). The proposed estimators
act on vector p and they employ {si} and {Gi(·)} as side
information.

To gain a better understanding of occupancy estimation, we
examine two distinct scenarios and, within each scenario, we
compare two alternate system configurations. The first setting
is one where system parameters λt and λo are known. In
this case, the Bayes estimator of Section III-A applies and
performance can be assessed using (12), the Bayesian mean
squared error. The second scenario is characterized by un-
known system parameters. In this case, one can seek estimates
for the system parameters λt and λo, and for the occupancy
of the target region. This can be achieved by the approaches
described in Section III-B and Section III-C. The average MSE
is employed to characterized performance in the latter setting.
Beside modeling assumptions, the system configurations can
differ in antenna types. The base system features monitoring
devices equipped with omnidirectional antennas, whereas the
alternate configuration incorporates devices with directional
antennas.

The physical parameters utilized throughout are derived
from free-space path loss, regulation issued by the Federal
Communications Commission (FCC), and profiles of typical
wireless environments. Nominal power A is calculated using

the Friis equation,

A = Pt + 20 log10

(
3× 108

fcarrier

)
− 20 log10(4π)

where Pt is the transmitted power from the mobile devices,
fcarrier is the frequency of operation for the Wi-Fi signals
which is 2.462 GHz [28], [29], [30]. The logarithmic standard
deviation, which characterizes variations in shadow fading, is
set to σs = 2.0 dBm. Pertinent values are summarized in
Table I.

TABLE I
SYSTEM PARAMETERS USED DURING SIMULATIONS.

Physical Parameters Values
Nominal Power A = −20.27 dBm
Free-Space Loss parameter B = −20 dBm
Logarithmic Standard Deviation σs = 2.0 dBm
3 dB Beamwidth (directional) θ3dB = 90◦

Antenna Floor Gfloor = 20 dB

A. Bayes Estimation of Occupancy

We first consider the Bayes estimation framework intro-
duced in Section III-A. We report our results using the Poisson
splitting representation. That is, the aggregate Poisson rate
across the two monitored regions is λ, and the splitting
parameter between these two regions is α. This leads to known
area-specific rates

λt = α
λ

At
λo = (1− α)

λ

Ao
.

Under this parameterization, we can plot performance results
as a function of the splitting coefficient α. Each performance
curve is associated with a specific value of λ ∈ {16, 32, 64}.
The vertical axis represents the empirical BMSE of (12).
A first set of curves in Fig. 3 showcases the BMSE of
the occupancy estimator operating on data collected using
isotropic antennas. The second group of curves, also shown
in Fig. 3, corresponds to four directional antennas located at
the four corners of the target area and pointing directly at the
center. These antennas have a 3 dB beamwidth of θ3dB = 90◦

and a nominal attenuation floor of Gfloor = 20 dB. Every
point is obtained by averaging over fifty thousand trials.

The minimum mean squared estimator is algorithmically
identical for cases with isotropic and directional antennas, and
it takes into consideration antenna gains. Systems equipped
with directional antennas perform uniformly better, irrespec-
tive of the aggregate rate λ and splitting coefficient α. This
performance improvement is attributable to a more discrim-
inating antenna configuration, which in turn leads to more
informative observations.

B. Classical Estimation of Occupancy

In this section, we adopt the traditional viewpoint whereby
the values of the parameters λt and λo are not known a priori.
Within this context, it is meaningful to seek estimates for
the Poisson rate parameters. Alternatively, one may wish to
estimate the number of devices inside the target area. We
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Fig. 3. This graph shows Bayesian mean squared error as functions of system
parameters. Solid lines represent systems with isotropic antennas, whereas
dashed lines correspond to the performance of systems with directional
antennas.

examine the latter scenario, assessing performance using the
average mean squared error. Section III proposes two solution
paths to obtaining estimates: a maximum-likelihood estimator
and a computationally efficient iterative algorithm. Figure 4
showcases the performance associated with the maximum-
likelihood scheme for both isotropic and directional antennas.
As before, the total Poisson rates studied are λ ∈ {16, 32, 64}
and the curves are functions of splitting coefficient α. We
emphasize that the classical estimation problem at hand is
inherently more difficult than the Bayes estimation task of
Section IV-A, which explains the rise in mean squared error.
This should be expected because there is more uncertainty in
the present setting. More importantly, in the current scenario,
a monitoring system entrusted with directional antennas too
significantly outperforms the equivalent system with isotropic
monitoring devices. Again, the more discriminating nature of
directional antennas translates into sizable gains.

Similar characterizations are illustrated in Fig. 5 for the
iterative procedure of Section III-C. Although numerically effi-
cient, the iterative method is prone to error in noisy situations.
When the gathered information is not very discriminating,
e.g., devices with isotropic antennas, the iterative algorithm
gives increasing weight to the larger of the two monitored
areas, At or Ao. In extreme cases where noise levels are very
high, the iterative algorithm can converge to naive decisions
where all the devices are estimated to be within the region of
interest, or all of them are ascribed to the outside region. For
these reasons, the iterative algorithm should only be employed
in settings where the gathered information is sufficiently
discriminating. Nevertheless, the iterative algorithm generally
performs better with directional antennas. In some cases,
the performance gains associated with narrow beamwidths
are quite staggering. This provides further evidence to the
benefits of using radiation patterns tailored to inference tasks
in wireless monitoring systems.
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Fig. 4. This plot shows mean squared error in target occupancy as functions of
splitting coefficient α under the maximum-likelihood scheme of Section III-B.
The solid lines correspond to systems with isotropic antennas, whereas dashed
lines are associated with systems using directional antennas.
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Fig. 5. This figure displays mean squared error in target occupancy as
functions of system parameters for the iterative procedure of Section III-C.
Solid lines represent systems with isotropic antennas, whereas dashed lines
correspond to the performance of systems with directional antennas.

V. TESTBED IMPLEMENTATION

To complement the numerical findings derived from our
theoretical framework, we offer experimental results obtained
through a testbed implementation. The prototype system is
designed around Wi-Fi technology operating on the 2.4 GHz
ISM radio band. In this experimental setting, wireless agents
are connected to a designated wireless access point. The target
area is a square of dimension 10 m × 10 m inscribed in a larger
square of dimension 50 m × 50 m. A diagram showcasing the
architecture for our monitoring system appears in Fig. 6.

1) Monitoring Devices: Every sensing device takes the
form of a dedicated Next Unit of Computing by Intel™, and it
runs an instance of GNU/Linux as its operating system. Wire-
less monitoring is enabled through an Alfa™ AWUS036NHA
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Fig. 6. Experimental results are based on four sensing units, each connected
to a cloud server. The monitoring devices run the GNU/Linux operating
system with Wi-Fi interfaces in monitoring mode. The inference tasks is to
estimate the number of active agents (black) within an area of interest, and
to distinguish them from agents (gray) outside of the target area.

wireless interface with a detachable antenna. This interface
features an Atheros™ chipset which is capable of listening
to all traffic present on a channel when operating in monitor
mode. The reverse polarity subminiature version A (RP-SMA)
antenna connector can be utilized to attach either an isotropic
antenna or a directional custom patch antenna. A custom
software build on the pcap application programming interface
(API) captures, filters, and catalogs wireless packets. This
software then creates a local database entry for every pertinent
packet, which includes MAC address, received signal strength
indicator (RSSI), and time. The information gathered by the
monitoring devices is then relayed to a central server for post-
processing.

2) Wireless Agents: To evaluate the performance of the
proposed monitoring system, one needs to compare estimated
results with a ground truth. In our testbed implementation,
the ground truth is acquired by running a custom app on
Android™ smartphones. Throughout the course of the exper-
iment, every wireless unit runs this custom app, which logs
GPS coordinates and time. The agents periodically transmit
the information collected by the app to a central location.
MAC addresses and time stamps are then used to match
locations to power vectors at the inference center, yielding
a data set for performance evaluation. Again, we emphasize
that the proposed occupancy estimation algorithms can run
without interaction with active units. The purpose of the app
is simply to establish a ground truth about device location for
benchmarking.

3) Experimental Samples: Altogether, the experimental set
contains approximately 800 power and location vectors for
monitoring devices with isotropic antennas, and another 800
power and location vectors for a system with directional anten-
nas. Since there are four monitoring devices, this is equivalent
to 6400 distinct points. Experimental trials are created by
generating random subsets of the available data points. More
specifically, a trial is created by first drawing Poisson random
variables with parameters λt and λo for the numbers of devices
within and outside the target area, respectively. Then, rt entries

are selected uniformly from agents in At; and ro entries, from
agents in Ao. The information corresponding to the resulting
subsets is aggregated into a single vector p, which serves as
input to the occupancy estimation algorithms. The estimates
are then compared with the ground truth derived from the
known locations.

The estimation schemes rely on knowledge of channel
parameters and antenna gains. For the experimental section,
antenna gains are measured empirically in an anechoic cham-
ber. Channel parameters A and B can vary depending on
the wireless environment [30], [31]. Our experimental profile
can be categorized as suburban, and site-specific values for
these parameters are obtained by applying the method of least
squares to all the gathered data,

argmin
a,b

∥∥∥∥∥∥∥∥


...
pij −Gi(φij)

...


︸ ︷︷ ︸

r

−


...

...
1 log10(dij)
...

...


︸ ︷︷ ︸

M

[
a
b

] ∥∥∥∥∥∥∥∥
2

.

Values for A and B are given in closed form by[
A
B

]
=
(
M tM

)−1
M tr.

The variance σ2
s is computed using a standard unbiased sample

variance estimator,

σ2
s =

1

n− 1

∑
i,j

(pij −A−B log10(dij)−Gi(φij))2

where n denotes the sample size [22], [23]. The parameters
for the isotropic systems are A = −42.60, B = −21.97, and
σs = 8.64 dBm. Similarly, the parameters for the systems
with directional antennas are A = −35.66, B = −24.83, and
σs = 10.15 dBm.

Normality of the residual errors are tested using Shapiro-
Wilk tests. Test values obtained are 0.9987 and 0.9979 for
our isotropic and directional data sets, respectively. We note
that, strictly speaking, errors cannot be Gaussian due to RSSI
quantization. Nevertheless, a Shapiro-Wilk value close to one
hints at the suitability of the Gaussian assumption, exclud-
ing quantization artifacts. This claim is further supported
by looking at Q-Q plots comparing empirical quantiles to
Gaussian quantiles, with all points lying close to the 45◦-line
as anticipated.

Experimental curves associated with occupancy estimation
in the Bayesian setting appear in Fig. 7. The performance
curves correspond to values of λ ∈ {16, 32}. As before,
the horizontal axis denotes the Poisson splitting parameter α.
The vertical axis indicates the experimental BMSE. Equivalent
plots for the classical scenario where occupancy is assessed
using a maximum-likelihood estimator for the intensity param-
eters, followed by the conditional expectation of (15), appear
in Fig. 8.

In both cases, experimental findings exhibit trends similar
to those identified through numerical simulations. Systems
equipped with directional antennas are generally more discrim-
inating and, hence, can performance substantially better. While
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Fig. 7. This graph depicts the experimental Bayesian mean squared error as
functions of Poisson splitting parameter α. Solid lines represent systems with
isotropic antennas, whereas dashed lines correspond to the performance of
systems with directional antennas.
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Fig. 8. This graph illustrates the experimental mean squared error in target
occupancy as functions of splitting coefficient α for the classical scenario
where Poisson intensity parameters are not known a priori. The solid lines
showcase experimental findings with isotropic antennas, whereas dashed lines
are for systems equipped with directional antennas.

comparing numerical simulations and experimental data, one
should keep in mind a few considerations. The locations
afforded by GPS units only form an approximate ground
truth because readings contain inaccuracies. This can affect
experimental results, especially for directional antennas where
uncertainties in angles of incidence can produce large errors.
This partly explains why the standard deviation σs is larger
for the directional system when compared to its value for
the implementation with isotropic antennas. Another source of
modeling mismatch originates from the Android smartphones
used during the data collection process. The theoretical results
assume that wireless agents possess omnidirectional antennas
whereas commercial smartphones have arbitrary radiation pat-

terns [32]. This too can decrease performance, and it seems to
affect systems with directional antennas more. Collectively,
these issues point to the distinctions between theory and
practice. Still, in most cases, experimental results corroborate
the value of wireless antennas tailored to inference tasks. In
systems engineered to take advantage of this design space,
rather than systems constructed of existing components, one
should expect gains to be even larger.

VI. CONCLUSION

This articles showcases how the antenna properties of a
wireless sensing system can statistically improve the perfor-
mance of inference algorithms. Our findings apply specifically
to occupancy estimation and are based on Wi-Fi monitoring.
However, this study hints at potential gains for other similar
tasks, as radiation patterns are a common bridge between
physical attributes and the gathered data. Such a framework is
especially relevant for Wi-Fi devices because they periodically
transmit probe signals to obtain information about nearby
access points. These packets incorporate metadata about the
identity of the senders, and they can be acquired passively
using wireless sensing devices in monitor mode. Our research
indicates that it is possible to accurately estimate the number
of active agents within a prescribed area by deploying sensing
devices about the area of interest, and that performance is
generally enhanced by the careful shaping of antenna radiation
patterns.

Conceptually, the radiation pattern of a sensing antenna
acts as a spatial projection kernel that affects received signal
strength. The performance of a monitoring system can then be
enhanced by employing a configuration that strongly discrimi-
nates between wireless agents that are located within or outside
the target area. This is illustrated in this article by positioning
devices at the corners of the region of interest and comparing
the performance of a system with directional antennas to
that of the same system with omnidirectional antennas. In
general, a more discriminating configuration yields significant
improvements over a generic setup with isotropic antennas.
Finding optimal configurations for specific scenarios is beyond
the scope of this article. The optimal sensing configuration
may depend on the geographic properties of the environment
being monitored and the statistical profiles of the device
population. However, one can expect performance to improve
with the number of monitoring devices, but suffer in richer
scattering environments.

Our findings point to several potential avenues for future
research. This includes developing algorithms for tracking
occupancy over time. It also encompasses the challenging
task of assessing the benefits of reconfigurable and pattern
dynamic antennas in the context of wireless inference. Agile
antennas can be used to acquire very discriminating infor-
mation about active devices, and warrants attention. Finally,
several more complex statistical objectives can be cast within a
similar framework. For instance, it should be possible to track
the movement of a particular device within its environment,
or infer interactions between devices based on proximity.
Acquired information could be leveraged in adapting Wi-Fi
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access point to current traffic conditions, or to implement
preemptive caching for roaming devices.

APPENDIX A
PROOF OF PROPOSITION 1

In this section, we provide a proof for Proposition 1. This
result asserts that the two-dimensional maximization of the
likelihood function introduced in (13),

max
λt,λo≥0

L
(
λt, λo;p

)
reduces to a scalar optimization task,

max
α∈[0,1]

L
(
na

At
α,
na

Ao
(1− α);p

)
.

First, we note that the original likelihood function can be
written as the product of an exponential function times a
polynomial function in λt and λo. As such, this function is
analytic and

max
λt≥0

max
λo≥0

L
(
λt, λo;p

)
= max
λo≥0

max
λt≥0

L
(
λt, λo;p

)
= max

(λt,λo)∈∆
max
c≥0
L
(
cλt, cλo;p

)
,

(23)

where ∆ is the standard 1-simplex

∆ =
{

(t1, t2) ∈ R2
∣∣t0 + t1 = 1, t0 ≥ 0, t1 ≥ 0

}
.

The next step in establishing Proposition 1 is to consider
the maximization over scalar c. Specifically, suppose that
parameters (λt, λo) ∈ ∆ are fixed. Then, under constant
scaling, we get

L
(
cλt, cλo;p

)
=

na∑
k=0

e−Atcλt−Aocλo

k!(na − k)!

×
∑

{I⊂[na]:|I|=k}

∏
j∈I

cλt

∫
At

fPj |Uj
(pj |uj)duj


×

∏
j∈Ic

cλo

∫
Ao

fPj |Uj
(pj |uj)duj


= cnae−(Atλt+Aoλo)(c−1)L

(
λt, λo;p

)
.

Proceeding forward, we find the coefficient that maximizes this
likelihood function. Since optima of unconstrained problems
are found at critical points, we take the first derivative of the
scaled likelihood function with respect to c,

d

dc

(
L(cλt, cλo;p)

)
=

d

dc

(
cnae−(Atλt+Aoλo)(c−1)L(λt, λo;p)

)
= nac

na−1e−(Atλt+Aoλo)(c−1)L(λt, λo;p)

− cnae−(Atλt+Aoλo)(c−1)(Atλt +Aoλo)L(λt, λo;p).

Setting this derivative to zero, we get a unique solution

c =
na

Atλt +Aoλo
.

We perform a second derivative test to assess the character of
this critical point,

d2

dc2
(
L(cλt, cλo;p)

)
=
(
na(na − 1)cna−2

− 2nac
na−1(Atλt +Aoλo) + cna(Atλt +Aoλo)2

)
× e−(Atλt+Aoλo)(c−1)L(λt, λo;p).

Evaluating the second derivative at the critical point reveals
that it is indeed a maximum,

d2

dc2
(
L(cλt, cλo;p)

)∣∣∣∣
c= na

Atλt+Aoλo

= −
(

na

Atλt +Aoλo

)na−2

nae
−na+Atλt+AoλoL

(
λt, λo;p

)
< 0.

Since the likelihood function vanishes when c approaches zero
and infinity, we deduce that this maximum is unique. Applying
this result to our original optimization problem in (23), we get

max
λt,λo≥0

L
(
λt, λo;p

)
= max

(λt,λo)∈∆
max
c≥0
L
(
cλt, cλo;p

)
= max

(λt,λo)∈∆
L
(

naλt

Atλt +Aoλo
,

naλo

Atλt +Aoλo
;p

)
= max
α∈[0,1]

L
(
na

At
α,
na

Ao
(1− α);p

)
.

That is, the two-dimensional optimization problem reduces to
a one-dimensional maximization.

APPENDIX B
PROOF OF THEOREM 1

This section offers a proof for Theorem 1. This is achieved
through several steps. In Lemma 1, we show that the proposed
algorithm has at most one fixed point in the open interval
(0, 1). When this fixed point exists, we prove that its basic of
attraction is the entire open interval in Lemma 2. A similar
argument is employed in Corollary 1 to show that, when
an interior fixed point does not exist, one of the end points
act as an attractor. Altogether, these findings ensure that the
iterative algorithm defined by alternating between Step III-C1
and Step III-C2 converges to the unique stable fixed point.

Lemma 1: Let g(x) be the function obtained by combining
(22) and (20), the two steps of the iterative scheme proposed
in Section III-C,

g(x) =
1

na

na∑
j=1

IAt(j)x

IAt
(j)x+ IAo

(j)(1− x)
. (24)

The mapping g : [0, 1]→ [0, 1] has at most one fixed point in
the open interval (0, 1).

Proof: By definition, any fixed point of the iterative
algorithm must fulfill the condition x = g(x). Finding such
fixed points is equivalent to identifying the zeros of

h(x) = x− g(x). (25)
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To study the properties of (25), we look at its first three
derivatives

h′(x) = 1− 1

na

na∑
j=1

IAt(j)IAo(j)

((IAt
(j)− IAo

(j))x+ IAo
(j))

2

h′′(x) =
2

na

na∑
j=1

IAt
(j)IAo

(j) (IAt
(j)− IAo

(j))

((IAt
(j)− IAo

(j))x+ IAo
(j))

3

h′′′(x) = − 6

na

na∑
j=1

IAt
(j)IAo

(j) (IAt
(j)− IAo

(j))
2

((IAt
(j)− IAo

(j))x+ IAo
(j))

4 .

For non-degenerate cases, the third derivative h′′′(·) is negative
for all points in [0, 1]. As such, h′(·) is strictly concave over
the same interval and it has at most two zeros within [0, 1].
In turn, this implies that h(·) possesses at most two critical
points. Since h(0) = h(1) = 0, we gather that h(·) has at
most one zero in the open interval (0, 1).

We proceed by examining the nature of the interior fixed
point, if it exists.

Lemma 2: Suppose that a fixed point of x = g(x) exists
within the open interval (0, 1). Then, this fixed point is an
attractor for the entire open interval.

Proof: We know from the proof of Lemma 1 that h′(·) is
a strictly concave, continuous function. If α ∈ (0, 1) is a fixed
point of g(·), then h(α) = 0. This, together with the fact that
h(0) = h(1) = 0, implies that h′(0) and h′(1) are negative.
Furthermore, since α must be located between the two critical
points of h′(·), the derivative of h(·) evaluated at α must be
positive and, consequently, g′(α) = 1−h′(α) < 1. Moreover,

g′(α) =
1

na

na∑
j=1

IAt(j)IAo(j)

((IAt(j)− IAo(j))α+ IAo(j))
2

is greater than zero. By continuity of g′(·), there exists a closed
neighborhood of α, denoted Nα, such that |g′(x)| < 1 for all
x ∈ Nα. Since Nα is closed and bounded, it is compact and
contains its limit-point. In particular,

sup
x∈Nα

|g′(x)| = B < 1.

By Taylor’s theorem, g(x) = g(α) + g′(ξ)(x − α), where ξ
lies between α and x. Then, for any x ∈ Nα,

|g(x)− g(α)| ≤ B|x− α|.

In other words, g(·) is a contractive mapping over Nα and
limk→∞ gk(x) = α for any x in the closed neighborhood.

It remains to show that α is an attractor for the entire open
interval (0, 1). To begin, assume x ∈ (0, α) − Nα. Function
g(·) is increasing therefore g(x) ≤ g(α) = α. Also, g′(·) is
strictly positive and [0, 1] is a compact set, therefore

M = inf
x∈[0,1]

g′(x) > 0.

Using Taylor’s theorem one more time, we get

α− g(x) = g(α)− g(x) = g′(ξ)(α− x) < M(α− x).

In other words, every time the iterative algorithm is apply to
x ∈ (0, α) − Nα, it makes a step of minimal size towards
α without exceeding it. The iterative sequence gk(x) is then

bound to enter Nα in a finite number of steps. A similar
argument applies when x ∈ (α, 1) − Nα. Thus, starting
with any point in (0, 1), the sequence gk(x) converges to the
interior fixed point α.

The same proof strategy can be applied to scenarios where
there are no fixed points.

Corollary 1: Suppose that there does not exist an interior
fixed point, then the iterative algorithm converges to zero or
one.

Proof: This results is a simple extension of Lemma 2.
Suppose there is no interior fixed point then either h(x) > 0
or h(x) < 0 for all x ∈ (0, 1). To begin, we adopt the former
condition. First, we note that g′′′(·) = −h′′′(·) and, as such,
g′(·) strictly convex. If g′(0) ≥ 1, then g′(x) > 1 for all
x ∈ (0, 1) and

h(x) = x− g(x) = x−
∫ x

0

g′(ξ)dξ ≤ x−
∫ x

0

dξ = 0,

which contradicts our original assumption. Hence, we have
g′(0) < 1. Moreover, g′(0) is greater than zero. By continuity
of g′(·), there exists a closed neighborhood of zero such that
|g′(x)| < 1 for all its members. Bounding the derivative over
that interval and applying the contractive mapping theorem, we
deduce that zero is an attractor over that neighborhood. For
values of x within (0, 1) but outside the neighborhood, we
use Taylor’s theorem to show that the sequence gk(x) enters
the neighborhood within finitely many steps. When h(x) < 0
for all x ∈ (0, 1), an analog argument applies, albeit with
convergence to one.
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[10] P. M. Djurić, M. Vemula, and M. F. Bugallo, “Target tracking by particle
filtering in binary sensor networks,” IEEE Trans. Signal Process.,
vol. 56, no. 6, pp. 2229–2238, 2008.

[11] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, 2009.



13

[12] O. Ozdemir, R. Niu, and P. K. Varshney, “Channel aware target local-
ization with quantized data in wireless sensor networks,” IEEE Trans.
Signal Process., vol. 57, no. 3, pp. 1190–1202, 2009.

[13] J. Wang, R. K. Ghosh, and S. K. Das, “A survey on sensor localization,”
Journal of Control Theory and Applications, vol. 8, no. 1, pp. 2–11,
2010.

[14] A. Vempaty, O. Ozdemir, K. Agrawal, H. Chen, and P. K. Varshney,
“Localization in wireless sensor networks: Byzantines and mitigation
techniques,” IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1495–1508,
2013.

[15] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy estimation
using only WiFi power measurements,” IEEE J. Sel. Areas Commun.,
vol. 33, no. 7, pp. 1381–1393, 2015.

[16] F. M. Naini, O. Dousse, P. Thiran, and M. Vetterli, “Opportunistic
sampling for joint population size and density estimation,” IEEE Trans.
Mobile Comput., vol. 14, no. 12, pp. 2530–2543, 2015.

[17] J. M. Smith and D. Towsley, “The use of queuing networks in the
evaluation of egress from buildings,” Environment and Planning B:
Planning and Design, vol. 8, no. 2, pp. 125–139, 1981.

[18] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng,
“Occupancy-driven energy management for smart building automation,”
in Workshop on Embedded Sensing Systems for Energy-Efficiency in
Building. ACM, 2010, pp. 1–6.

[19] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, classi-
fication, and tracking of targets,” IEEE Signal Process. Mag., vol. 19,
no. 2, pp. 17–29, 2002.

[20] X. Sheng and Y. H. Hu, “Maximum likelihood multiple-source localiza-
tion using acoustic energy measurements with wireless sensor networks,”
IEEE Trans. Signal Process., vol. 53, no. 1, pp. 44–53, 2005.

[21] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics:
A Foundation for Computer Science, 2nd ed. Addison-Wesley, 1994.

[22] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice Hall, 1993, vol. 1.

[23] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
Springer, 1998.

[24] G. Casella and R. L. Berger, Statistical Inference, 2nd ed. Duxbury
Thomson Learning, 2001.

[25] S. M. Ross, Stochastic Processes, 2nd ed. Wiley, 1995.
[26] D. J. C. MacKay, Information Theory, Inference, and Learning Algo-

rithms. Cambridge University Press, 2003.
[27] Spatial Channel Model for Multiple Input Multiple Output (MIMO)

Simulations, Technical Specification Group Radio Access Network, 3rd
Generation Partnership Project, 2011, release 10.

[28] H. T. Friis, “A note on a simple transmission formula,” Proc. IRE,
vol. 34, no. 5, pp. 254–256, 1946.

[29] J. D. Kraus, Antennas, 2nd ed. McGraw-Hill, 1988.
[30] A. Goldsmith, Wireless Communications. Cambridge University Press,

2005.
[31] A. F. Molisch, Wireless Communications, 2nd ed. Wiley, 2010.
[32] D. Tunon, J.-F. Chamberland, and G. H. Huff, “Orientation-awareness

and wireless systems,” in Inf. Theory and App. Workshop (ITA). IEEE,
2015, pp. 230–234.


