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Abstract—Modern communication and computation systems
often consist of large networks of unreliable nodes. Still, it is
well known that such systems can provide aggregate reliability
via redundancy. While duplication may increase the load on
a system, it can lead to significant performance improvement
when combined with the judicious management of extra system
resources. Prime examples of this abstract paradigm include
multi-path routing across communication networks, content ac-
cess from multiple caches in delivery networks, and master/slave
computations on compute clusters. Several recent contributions
in the area establish bounds on the performance of redundant
systems, characterizing the latency-redundancy tradeoff under
specific load profiles. Following a similar line of research, this
article introduces new analytical bounds and approximation
techniques for the latency-redundancy tradeoff for a range of
system loads and a class of symmetric redundancy schemes,
under the assumption of Poisson arrivals, exponential service-
rates, and fork-join scheduling policy. The proposed approach
can be employed to efficiently approximate the latency distribu-
tion of a queueing system at equilibrium. Various metrics can
subsequently be derived for this system, including the mean
and variance of the sojourn time, and the tail decay rate
of the stationary distribution. This article also establishes the
stability region in terms of arrival rates for redundant systems
with certain symmetries. Finally, it offers selection guidelines
for design parameters to provide latency guarantees based on
the proposed approximations. Findings are substantiated by
numerical results.

Index Terms—Data storage systems, forward error correction,
content distribution networks, distributed information systems,
Markov processes, equilibrium distribution, queueing analysis.

I. INTRODUCTION

The operation of the Internet and the satisfaction of its
users increasingly depend on the rapid and reliable availability
of files and other data. Terabytes of digital traffic travel
over network subcomponents every second, predominantly
consisting of multimedia content. A large portion of this data
is hosted on content delivery networks and distributed storage
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systems. These systems keep information redundantly at multi-
ple servers to ensure reliability and availability, despite the fact
that individual components are failure prone. Forward error
correction has emerged as a fundamental means to enhance
information storage and improve content dissemination across
networks. For instance, preserving data over a collection of
agents using maximum distance separable (MDS) coding can
increase the reliability of a storage system, while limiting the
amount of redundancy needed to achieve a prescribed perfor-
mance level [1]. Potential applications for such a technology
range from large data centers and cloud storage, to peer-to-
peer systems with ubiquitous access. Recent years have seen
intense investigation of several aspects of persistent storage
and advanced coding for distributed systems. These topics
include efficient erasure correcting codes [2], [3], recovery
schemes [4], repair traffic requirements [5], [6], and related
notions of security [7]–[9].

Advances in low complexity codes for distributed storage
with low overhead for repair and regeneration have also fueled
an interest in understanding the tradeoff between redundancy
and access time [10]–[21]. This contribution is aligned with
these latter considerations, and further explores the interplay
between storage coding and request completion times. In this
context, it is pertinent to note that content access time in
distributed storage is related to the computation time of mas-
ter/slave tasks in compute clusters with job replication [13]–
[18]. Since a job completion queue is mathematically equiv-
alent to a request queue for content delivery, we restrict our
discussion of the problem to access delay in distributed storage
systems with the understanding that the tools developed herein
apply to both settings.

Fundamentally, data management in distributed storage in-
volves a few key elements. First, the original file is partitioned
into blocks and subsequently encoded into n pieces. These
pieces are stored at different locations. When the file is
requested, the user must gather at least k pieces to recover
its content and reconstruct the original file. Requirements
on which k blocks can be employed to recover the file
depend on the coding strategy adopted by the system. Two
encoding schemes have become emblematic cases to study the
latency-redundancy tradeoff. One approach is based on file
fragmentation and duplication, a version of block repetition
coding. Under this scheme, a request is fulfilled by collecting
one information piece of every possible kind. The original
file is subsequently reconstructed by appending the various
pieces. More elaborate coded abstraction relies on the fact
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that, over large fields, it is straightforward to create packets
that are less restrictive for reconstruction. As such, the original
file can be recovered from any combination of k blocks via a
standard decoding process. We refer to this latter scheme as
MDS coding.

The greater flexibility afforded by file encoding can im-
prove the content recovery process. However, this distributed
structure must be paired with a download strategy that dictates
which servers should be contacted by a particular user. This
process can be centralized [21], or it can be accomplished
using redundant requests with cancellation [14], [22]. One
subtlety associated with preemption stems from the option to
discard redundant requests when k jobs are initiated or when
k jobs are completed. Irrespective of this distinction, a file
request exits the system whenever all the necessary chunks
have been delivered.

Under Poisson arrival and exponential service assumption,
the request queue for content stored over a distributed system
can be modeled by a continuous-time Markov process with a
countable state space; yet such processes often prove difficult
to analyze. Consequently, a candidate approach to understand
these systems is to find models that stochastically dominate
the evolution of the actual Markov chains and are easier to
characterize. For example, the authors in [20], [21] consider a
scheme for distributed storage where a file request is fulfilled
by contacting k servers. They then propose tractable quasi-
birth-death (QBD) processes that can bound the performance
of the request queue using matrix-geometric methods [23]–
[25]. Following this approach, one can numerically evaluate
key attributes of these dominating QBD processes, thereby
establishing performance bounds on the original system and
enabling the comparison of alternate implementations. Like-
wise, the authors in [13]–[15] propose fork-join queues that
bound the performance of a content request queue for redun-
dant requests with cancellation. Implicitly, they are analyzing
an MDS coding scheme where any size-k subset of servers
can finish the job. This methodology is employed to provide
an upper bound on mean completion time.

A simpler alternative to finding queue distributions and
mean delay is finding the mean completion time. Mean
download time is studied under i.i.d. exponential service
time assumption for (n, k) MDS code for k = 2 in [26],
and for availability code under Poisson arrivals in [27]. An
M/G/1 approximation for mean download time is proposed
for specific value of k = 2 in [26], whereas an upper bound for
mean download time is proposed for high arrival rates along
with a characterization for low arrival rates in [27].

Different scheduling and replication policies for general
service times are considered in [28]. Dynamic scheduling
and replications for file dependent service time is considered
in [29], and bounds and approximations are proposed for the
response time of specific policies. Cancellation delay for repli-
cated task is considered in [30] and latency optimal dynamic
scheduling policies are proposed for two server systems with
Poisson arrivals and exponential service.

A. Main Contributions
In this article, we revisit the distributed storage framework

where file requests are fulfilled by a sub-collection of servers,
each possessing one data block. We introduce a general
framework for symmetric codes and we focus on the two rep-
resentative systems described above, block repetition and MDS
coding. We adopt the replication-cancellation case, where
redundant requests are discarded upon service completion.

Our main contribution is threefold. First, we introduce a new
analytical approach to study content access delay in distributed
storage systems. This approach is based on tandem queues
with server pooling, and it applies to various coding scenarios
including block repetition and MDS coding. Under this view-
point, the service rate of the tandem queues are coupled and
state-dependent. Second, we leverage this abstraction to estab-
lish novel upper and lower bounds on the latency performance
of a distributed storage system with redundant requests. This is
accomplished by defining analytically tractable tandem queues
that dominate the performance of the original tandem queue
from above and below. This alternate queueing model naturally
leads to approximations for the operation of distributed storage
systems. The performance of the dominating queues and the
approximate systems are characterized completely, leading to
closed-form expressions for sojourn time in the corresponding
Markov chains. These results are especially pertinent for
intricate coding schemes with a large number of servers where
existing numerical techniques can become inadequate. Third,
we find the stability regions for these tandem queues using
Lyapunov techniques.

The remainder of this article is organized as follows. We
introduce the coding model in Section II. Building on storage
codes, we describe the queueing model for requests in Sec-
tion III. Taking into consideration the arrival and departure
processes, we derive Markov models for the ensuing Markov
processes in Sections IV and V. Our theoretical findings,
along with a detailed analysis, are presented in Section VI.
Numerical results are reported in Section VII. Finally, we
conclude with a brief discussion of our findings and we outline
possible avenues of future research in the last section.

II. CODING MODEL

Going along with existing literature, we study the operation
of a distributed storage system by focusing on a single file
m. We assume that this file can be partitioned into k pieces
m1,m2, . . . ,mk. We view these entries as elements in a large
finite field Fq , writing

m = (m1,m2, . . . ,mk) ∈ Fkq .

Let C = [n, k, d]q denote a linear code that maps a k-length
message m ∈ Fkq to an n-length codeword x ∈ Fnq , and with a
minimum Hamming distance d between any two codewords.
We can represent this encoded message by

x = C(m) = (C1(m), C2(m), . . . , Cn(m)).

For simplicity, we take n/k to be an integer. The collection
of codewords corresponding to all possible messages forms a
codebook, which we denote by

C = {C(m) : m ∈ Fkq}.
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Once encoded, message m is stored redundantly at n servers
by assigning every coded component to a specific location.
More precisely, symbol xj = Cj(m) is stored on server j. At
a specific time instant during the data downloading process,
a particular user may have acquired blocks corresponding to
a subset T ⊆ [n] , {1, . . . , n} of available servers. We refer
to the hosts that have provided the downloaded blocks as the
observed servers. We can write the projection of codeword
x ∈ Fnq onto the subset of observed servers T as

xT = (xi : i ∈ T ).

A k-element subset S ⊆ [n] is called an information set [31],
if the restriction m 7→ (Cj(m) : j ∈ S) forms a bijection, i.e.,

CS ,
{

(Cj(m) : j ∈ S) : m ∈ Fkq
}

= Fkq .

In words, a set of observed servers is an information set
whenever the intended user is able to recover unambiguously
all k pieces of the original message m, with no extraneous
blocks of downloaded information. We denote the collection
of information sets for a code C as

I(C) ,
{
S ⊆ [n] : |S| = k, CS = Fkq

}
.

When the set T of observed servers is not an information set,
we can define the notion of useful servers,

M(T ) = {i /∈ T : i ∈ S for some S ∈ I(C)}

=
⋃

S∈I(C)

S \ T.

This is the collection of servers that can provide a useful piece
of information to the user, given the information acquired thus
far. From this definition, it follows that

M(T ) ⊆ [n] \ T and T ⊆ [n] \M(T ).

As an elementary example, suppose that an incoming request
arrives in the queue with no data blocks. Then, all available
servers are useful to this particular request at that time and
M(∅) = [n].

The analysis framework developed in this article applies to
all symmetric linear codes for which the cardinality of every
set of useful servers M(T ) depends solely on the cardinality
of the information subset T . For such codes, we can introduce
a shorthand notation for the number of useful servers,

N|T | , |M(T )|. (1)

This condition implied by (1) may seem abstruse; however,
we note that the two emblematic coding paradigms used in
distributed storage, block repetition and MDS coding, possess
this property. For convenience, we label instances of these
classes of codes as C rep = [n, k, drep] and Cmds = [n, k, dmds].

For a block repetition code, each distinct piece mi is stored
at n/k servers. We denote the set of servers with message i
as

Si = {j ∈ [n] : xj = mi}.

By assumption |Si| = n/k, and {Si : i ∈ [k]} partitions the set
of servers [n]. The minimum Hamming distance drep between
two codewords for replication is n/k. Furthermore, we can

decode the message m whenever we observe the data blocks
associated with a subset of servers S ⊆ [n] such that |S| = k
and |S ∩ Si| = 1 for every i ∈ [k]. We can therefore write the
collection of information sets for block repetition coding as

I(Crep) = {S ⊆ [n] : |S| = k, |S ∩ Si| = 1 for i ∈ [k]}.

We observe that there are (n/k)k elements in the collection
I(C rep). For this coding scheme, once a request receives a
message piece mi, no other server in Si can serve it anymore.
Hence, the set of useful servers for any request with partial
codeword xT can be written as

M(T ) =
⋃
i/∈T

Si and T ⊆ [n] \M(T ).

Since {Si : i ∈ [k]} partitions the set of all servers [n] and
|Si| = n/k for each i ∈ [k], the number of useful servers is
N|T | = (max{k − |T |, 0})n/k for any information subset T .

MDS codes have optimal minimum Hamming distance,
dmds = n − k + 1. Under this scheme, each server j ∈ [n]
stores a symbol xj = Cj(m) such that any k distinct symbols
suffice for the reconstruction of message m. Thus, in this case,
we have the collection of information sets

I(Cmds) = {S ⊆ [n] : |S| = k}.

Consequently, there are
(
n
k

)
distinct elements in I(Cmds).

Since
(
n
k

)
> (nk )k, MDS codes offer a greater number of

decodable subsets compared to block repetition codes and
hence they should perform better. Notice that, under this
scheme, every remaining server can offer a useful block. For
instance, once served by a server j, a request can be served
by any other servers in [n] \ {j}. The set of useful servers for
a request with partial codeword xT is given by

M(T ) = [n] \ T and T = [n] \M(T )

for any T ⊆ S ∈ I(Cmds). Also, the number of useful servers
admits the simple form N|T | = n − |T | for any information
subset T .

For illustrative purposes, we examine the operation of
fragmentation and replication against that of MDS coding.
We focus on the scenario where k = 2 and n = 4; this
rudimentary setting offers an easy comparison between our
upcoming numerical results and those published in [14], [21].
For the (4, 2) case, message m consists of two parts A and B.

In block repetition coding, the components A and B are each
stored at two locations. A request is then completed when the
user is successfully served by one cache containing block A
and another cache holding block B. We can write the generator
and parity-check matrices for the (4, 2) replication code as

Grep =

[
1 1 0 0
0 0 1 1

]
Hrep =

[
1 −1 0 0
0 0 1 −1

]
.

Contrastingly, in MDS coding, a file is partitioned into two
pieces and independent linear combinations of these blocks
are generated. This strategy necessitates that packets be long
enough to support encoding in a high-order field, a require-
ment easily met in practice. Every encoded message is then
stored on a single server. For instance, when four caches are
present, candidate messages could be A, B, A+B, A+2B. The
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original media object can then be recovered by successfully
contacting any two servers, a slightly more flexible stipulation
than before. The generator and parity-check matrices for a
(4, 2) MDS code appear below,

Gmds =

[
1 0 1 1
0 1 1 2

]
Hmds =

[
−1 −1 1 0
−1 −2 0 1

]
.

The operations of these two alternate implementations for
systems with four servers are depicted in Fig. 1 and Fig. 2,
respectively.

A

A

B

B

?�∗

?�∗

�∗

�∗

•
•

•
•

•

Figure 1. This diagram depicts a distributed fork-join network with four
caches. Two servers are storing symbol A, and the other two servers host
symbol B. Under this divide and replicate paradigm, a request must obtain
piece A and piece B to reconstruct the original media object.
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Figure 2. In a more elaborate fork-join coded system, the various caches store
independent messages. The original media object can therefore be recovered
by decoding the content of any two distinct data blocks. Once this is achieved,
the corresponding requests are dropped from the remaining queues.

III. QUEUEING MODEL

A single file is fragmented into k parts, and encoded to n
symbols using a symmetric coding described in Section III-A.
Each of the n encoded symbol is stored uniquely over one
of the n caches. We assume Poisson arrivals of the requests
for the file download. Requests for file m arrive at a central
location, and they are placed in a queue of infinite buffer size.
These requests are subsequently served by available n caches,
each hosting a block of information. We assume that every user
demands the whole message m, which can be recovered by
downloading data components from all caches corresponding
to an information set. That is, we assume an (n, k) fork-join
scheduling where k is the size of the information set. We
assume instantaneous decoding of the file from the information
set of coded symbols, and an instantaneous cancellation of
request at other servers, once file m can be decoded by the
request. Service distribution at each cache is assumed to be
independent, identical, and memoryless. These assumptions
simplify the analysis and provide optimistic coding gains
under our idealized conditions.

A. Symmetric Coded Storage

We assume there is a single file m in the system, divided
into k fragments (m1, . . . ,mk) and encoded into n symbols
(C1(m), . . . , Cn(m)). Each cache j ∈ [n] stores the distinct
symbol Cj(m). We assume a symmetric coding scheme such
that after downloads from a subset T ⊆ [m] servers, the num-
ber of useful servers |M(T )| depends only on the cardinality
of the set of observed servers T . A large majority of the
existing literature studies the performance of MDS [15], [19],
[21], [26] or replication codes [22], [26], [28]–[30], due to the
favorable structural properties amenable to analysis. It turns
out the cardinality of useful servers is a fundamental property
that governs the system performance, and we can consequently
generalize our study to symmetric codes. Performance analysis
of general storage codes remains an open question. Many
symmetric codes involve a non-trivial decoding at the receiver
from the encoded pieces in an information set. In this work,
we make the idealized assumption of negligible decoding
latency. This approximation works well for the case when
communication is expensive and processing is cheap. That is,
when the decoding latency is much smaller than the access
latency caused by limited communication resources.

B. Poisson Arrivals

We assume that the times between consecutive arrivals
form a sequence of independent and exponentially distributed
random variables, each with mean 1/λ. That is, arrivals
are assumed to be an instance of a Poisson process. This
assumption is motivated by simplicity of analysis, and is a
popular assumption in the performance analysis literature [26],
[30].

C. Memoryless Service

The service time at a particular cache is an exponential
random variable with rate µ, and it is independent of other
requests and caches. The waiting times between consecutive
service opportunities at a specific location form a Poisson
process. These processes are independent from one cache to
another. This assumption renders analysis tractable and it has
been adopted by several previous works in this area [20]–[22],
[26], [27], [30]. It has been shown in the literature [18], [32],
[33] that shifted exponential distribution can well model the
empirical service time distribution in data centers, and heavy
tailed distributions can model the service time in large server
farms [18], [34]–[36]. Nevertheless, we adopt exponential ser-
vice distribution for mathematical convenience and tractability,
and derive insights from this study to provide system design
guidelines for general service distributions.

As a consequence of our modeling assumptions, when a
user is served in parallel by multiple caches, the waiting time
until it acquires its next block becomes the minimum among
the exponential service times of all its assigned caches. Since
the service times across the storage system are exponentially
distributed with rate µ, the waiting time for the parallel
processing of a same user at ` locations is exponential with
rate `µ.
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D. Service Constraints

Every server can supply one data block, which can ulti-
mately be combined with other pieces to recover the original
file m. For any [n, k, d] linear coding strategy, a request that
has already acquired data blocks T ⊆ [n], can only be served
by the set of useful servers M(T ). For instance, in block
repetition coding, when a user already possesses blocks m1

and m2, then it can only be served by caches that offer
different blocks, i.e.,

M({1, 2}) = {i ∈ [n] : xi /∈ {m1,m2}} .

On the other hand, a user can still be served by caches labeled
{3, 4, . . . , n} after acquiring information blocks x1 and x2
under MDS coding. That is,

M({1, 2}) = [n] \ {1, 2}.

E. Scheduling and Queue Management

As mentioned before, we investigate symmetric coding
policies, such as block repetition and MDS coding. We refer to
the task of matching requests to servers and managing queues
as scheduling. Throughout, we consider an (n, k) fork-join
scheduling policy [14]. This policy is attractive both from the
analytical and practical perspective. On the practical side, it
is a simple policy where the requests experience the shortest
waiting and service time [28], and it is work-conserving in
the sense that a useful server is never idle. This policy has
desirable analytical properties such as stationarity that induces
the Markov property on the queueing system.

In the fork step of this policy, every server has an associated
individual queue, and each incoming request joins all n queues
through replication. In the join step, a request leaves the
system when it successfully gathers blocks associated with an
information set and can therefore reconstruct the original file
m. Furthermore, pending block queries are instantly dropped
from useless queues when their parent request gathers new
information blocks. Specifically, when a request acquires mes-
sage subset T , all the servers in set [n]\M(T ) abandon block
queries associated with the underlying request. Under MDS
coding, a request leaves the system when it gets served by any
k servers; whereas a request leaves the system when it gets
served by k caches with distinct blocks for block repetition
coding. In all cases, block queries are served on a first-come-
first-served (FCFS) basis at every location.

Coordination for this infrastructure is established through
a central agent. When a server finishes processing a block
query, it removes this block from its queue and notifies the
central coordinating agent. It then starts processing the next
block query in its queue. As notifications arrive at the central
agent, servers entering the set of useless servers for this request
are instructed to discard the associated block queries. When
a request gathers k pieces from an information set, all its
remaining block queries are dropped and the request exits the
central location. This model is equivalent to the one studied
in [14]–[16]. An alternative scheduling policy would limit
the processing of concurrent block queries to a maximum of
k locations with linearly independent content. This alternate

scheduling model forms a basis for the findings reported
in [20], [21].

Cancellation delays in dropping the remaining (n − k)
queries for the request, when the request gathers k pieces
from an information set, have been studied in [28], [30].
It is shown to adversely impact the latency and throughput,
since the amount of work done by workers processing the
cancellation request is wasted. In this work, we have assumed
zero cancellation overhead as a first order approximation to
explore optimistic gains afforded by the coding.

F. Sample Path of Queue Evolution

As an example, consider a sample path for the evolution
of queued requests under (4, 2) MDS coding with message
m = (A,B). We assume that the system is initially empty.
When the first request arrives, it joins the queues at all four
locations. Then, two additional requests arrive before the first
service opportunity materializes. At this stage, the four queues
each have three requests, which they process using an FCFS
policy. Suppose that the first block successfully downloaded
by request 1 is A, and that it is provided by server 1. At this
stage, request 1 exits the queue of server 1, yet it continues to
be served on all remaining servers. Server 1 starts serving the
second request. Next, request 1 obtains A + B from server 3.
Then, request 1 is immediately dropped from server 2 and
server 4, as advised by the central agent. Having acquired an
information set, user 1 can decode the original file m and it
exits the system. This process continues in a similar manner,
with new requests arriving in the system and data block being
downloaded from the four caches.

IV. CONTINUOUS TIME MARKOV CHAIN

In this section, we characterize Markov processes related
to this queueing system. Recall that requests leave the system
as soon as their gathered symbols form an information set
S ∈ I(C). We denote all possible subsets of size less than k
by

Pk(n) = {S ⊆ [n] : |S| < k}.

For any work-conserving scheduling policy the set of messages
gathered by any partially served request at any time t is an
element of Pk(n). We denote the subset of blocks acquired
by request i at time t by Si(t). The number of requests in
the system at time t is denoted by r(t). When the system is
empty, its state is denoted by e. Otherwise, the state of the
system at any time t is

S(t) = (Si(t) ∈ Pk(n) : i ∈ [r(t)]). (2)

Proposition 1. For Poisson arrivals, exponential service times,
and a Markov scheduling policy, the stochastic process {S(t) :
t ≥ 0} possesses the Markov property.

Proof: Given Poisson arrivals and the exponential service
model, there is at most a single event in an infinitesimal time
interval. Suppose that there are r > 0 requests in the system at
time t. Then, we can denote the state of the system by S(t) =
(S1, . . . , Sr). An arrival leads to an increase in the number
of requests in the system, driving the state to (S1, . . . , Sr, ∅);
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this happens at rate λ. A service completion leads to a unit
increase in the message sets of one of the requests; this occurs
with rate ∣∣∣∣∣

r⋃
i=1

M(Si)

∣∣∣∣∣µ.
Upon request i receiving data block j, its message sets Si
changes to Si ∪ {j} where j ∈ M(Si). The probability of
this event depends on the scheduling policy. Since the server
selection for requests is a function of the current state, this
probability is independent of time and depends only on the
current state. Hence, the system features the Markov property,
as desired.

Theorem 2. For a distributed storage system with a symmetric
code and fork-join queues with FCFS service, the set of
useful servers {M(Si(t)) : i ∈ [r(t)]} is totally ordered
by set inclusion. In addition, the size of message subsets
{|Si(t)| : i ∈ r(t)} is non-decreasing in i.

Proof: See Appendix A.

A. Transition Rates

Leveraging the structure of the system outlined in Theo-
rem 2, we can succinctly describe the transition rates associ-
ated with this continuous-time Markov chain. State transitions
due to arrivals occur at rate

Q (S, (S, ∅)) = λ.

Next, we consider request completions that do not lead to
departures. Specifically, a service completion from server j to
request i, where j ∈M(Si)\M(Si−1) and |Si| < k−1, takes
place at rate

Q(S, (S1, . . . , Si−1, Si ∪ {j}, Si+1 . . . , Sr)) = µ.

We note that the number of servers assigned to request i
is |M(Si)| − |M(Si−1)|. Thus, the aggregate rate at which
this request is receiving service can be expressed as
(|M(Si)| − |M(Si−1)|)µ. States where |S1| = k − 1 form
a special case; in this situation, the head request acquires its
last data block and departs from the queue at rate

Q((S1, . . . , Sr), (S2, . . . , Sr)) = |M(S1)|µ.

Collectively, these rates completely characterize the generator
matrix for Markov chain S(t). As always, the diagonal ele-
ments of the generator matrix are defined such that the rows of
the matrix sum to zero. The symmetry in the coding schemes
suggests that this chain may be amenable to a reduction in state
space for performance analysis. We explore this possibility
below.

B. Reduction of State Space

For symmetric codes, we gather that the number of useful
servers and, hence, the rates at which a particular request is
being served within the Markov chain depend solely on the
cardinalities of the message subsets.

Theorem 3. Let S(t) be the state of the queueing system at
time t, as defined in equation (2). The number of fragments
downloaded by the ith request at time t is denoted by Li(t) =
|Si(t)| for each i ∈ r(t). Under the assumptions in Theorem 2,
the process L(t) = (Li(t) : i ∈ [r(t)]) is a continuous time
Markov chain.

Proof: Since all the servers are independent and they
each have exponential service times with rate µ, the ensuing
transition rates can be viewed as functions of L(t). In other
words, keeping track of the number of data blocks accumulated
by each request, rather than recording the specific labels of the
downloaded blocks for every request, is enough to trace the
lengths of all the queues. Moreover, L(t) inherits the Markov
property from S(t) because the original process is Markov and
transition rates in L(t) are completely determined by its own
state.

Let ` = (`1, . . . , `r) denote a possible state for L(t). By
Theorem 2, we already know that `1 ≥ `2 ≥ · · · ≥ `r. As
before, there are three types of transitions. First, a new packet
may arrive; this event takes place at rate Q(`, (`, 0)) = λ.
Second, a request can get an additional data block without
leaving the system. This is only possible when `i < k − 1,
and it occurs at rate

Q(`, (`1, . . . , `i + 1, . . . , `r)) =
(
N`i −N`i−1

)
µ,

where N`i is the notation for the number of useful servers
to request i introduced in (1), and N`0 = 0. The last
possibility corresponds to the head request obtaining its last
block and exiting the system. This event only happens when
`1 = k − 1 and, when admissible, it comes about with rate
Q(`, (`2, . . . , `r)) = N`1µ. Together, these rates determine the
generator matrix for reduced Markov chain L(t).

V. TRANSFORMATION OF STATE SPACE

The reduced state space for process L(t) defined in The-
orem 3 yields admissible states that form sequences of non-
increasing integers, with

k − 1 > `1 > `2 > · · · > `r > 0.

Still, the number of elements in these sequences can be
arbitrarily large. The structure identified above invites one
further simplification with a convenient fixed-length repre-
sentation for the states. The underlying idea is to employ a
bijection between ` and a fixed-length vector by counting the
occurrences of every integer between zero and k−1 in `. This
is achieved by defining a vector y ∈ Nk0 where individual
component yi is equal to the number of requests that have
gathered exactly i data blocks. Moreover, the total number of
requests in the system is r = y0 + · · ·+yk−1. Mathematically,
we get

yi = |{i′ ∈ [r] : `i′ = i}| .

This bijective transformation of the original process to a k-
length vector immediately produces a new Markov chain; this
is formalized in Corollary 4.
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Corollary 4. For a distributed storage system with a symmet-
ric code and fork-join queues with FCFS service, the random
process

Y (t) = (Y0(t), Y1(t), . . . , Yk−1(t)),

where Yi(t) denotes the number of requests that have gathered
exactly i data blocks at time t, forms a continuous-time Markov
chain.

Proof: From Proposition 1 and Theorem 3, we know that
process S(t) and L(t) are continuous-time Markov chains.
By construction, Yi(t) denotes the number of requests that
have accumulated i data blocks at time t. We can write the
component of Y (t) as

Yi(t) = |{i′ ∈ [r(t)] : |Si′(t)| = i}|
= |{i′ ∈ [r(t)] : Li′(t) = i}|.

Since there exists a bijective transformation between L(t) and
Y (t), we must conclude that Y (t) is also a continuous-time
Markov chain.

While straightforward, Corollary 4 is important because it
reveals the form of the Markov chain we employ to assess the
performance of competing implementations. Once established,
this concise representation is easy to track and it captures
the essential behavior of the queueing system. An interesting
attribute of the reduced Markov chain is that its state space
becomes agnostic to the identities of the information blocks, as
long as the coding scheme possesses the symmetric property.

The transition rates of Y (t) are inherited from L(t). As
an intermediate step in identifying these rates, we introduce
a shorthand notation for possible next states and admissible
transitions. To express transition rates in a compact form, it is
important to keep track of which components in y are greater
than zero; we define an appropriate index set as follows,

I(y) = {i ∈ {0, 1, . . . , k − 1} : yi > 0}.

Also, let ei ∈ Nk0 represent the standard k-dimensional unit
vector along coordinate i. Suppose that the request queue is in
state y = (y0, . . . , yk−1) ∈ Nk0 . The arrival of a new request
in the queue leads to a transition to state y+ e0. The delivery
of a data block to a request with i − 1 ∈ I(y) pieces of
information produces a transition to y+ei−ei−1. Likewise, a
request receiving its last piece of information is only possible
when yk−1 > 0, and it triggers a jump to state y − ek−1.
In summary, under arrivals and service completion events, we
can track the evolution of the system in functional form with

ai(y) ,


y + e0, i = 0,

y − ei−1 + ei, i ∈ [k − 1],

y − ek−1, i = k.

Again, we emphasize that a transition of type ai(·) can only
take place when the number of requests with i − 1 pieces is
greater than zero, i.e., i−1 ∈ I(y). Otherwise, the underlying
service opportunity trickles down to the next available request
with fewer information blocks.

To capture the cascading effect in expressing transition rates,
we need to keep track of server assignment. This can be

accomplished by registering the next non-empty level up in y.
We denote the smallest index above i for which the number
of partially fulfilled request is non zero by

ui(y) , k ∧min{u > i : yu > 0}, (3)

where ∧ is the minimum of the two arguments.
Using the notation developed so far, we can systematically

describe the non-zero off-diagonal entries of the generator ma-
trix associated with continuous-time Markov process Y (t). As
before, new requests enter the queue at rate Q(y, a0(y)) = λ.
The number of servers assigned to level i and, hence, the rate
at which its head request is being served can be described
iteratively. We denote this rate Q(y, ai(y)) for i ∈ [k] by
µi−1(y). When yk−1 is not zero, the number of servers
dedicated to delivering a last piece to the head request is equal
to Nk−1. Hence,

µk−1(y) = Q(y, ak(y)) = Nk−1µ1{yk−1>0}.

Whenever a coordinate becomes empty, the corresponding
servers start focusing on requests with fewer pieces of infor-
mation. This leads to a trickle down effect. Mathematically,
we get

µi−1(y) = Q(y, ai(y)) =
(
Ni−1 −Nui−1

)
µ1{yi−1>0}

= 1{yi−1>0}

ui−1−1∑
j=i−1

(Nj −Nj+1)µ,
(4)

where ui is the next level up defined in (3).
When all n servers are busy, the aggregate rate of service

is nµ. However, under the fork-join FCFS scheduling policy,
some servers may be idling. In particular, when a server
is not useful to any active request, then it cannot provide
meaningful content and the corresponding work opportunity is
lost. Conceptually, the cascading effect reduces the probability
of having idling servers by dynamically reassigning processing
power to requests with fewer pieces.

An empowering means to view this system is to think of the
number of requests y as customers who desire k different types
of service in sequence. Under this abstraction, yi denotes the
number of customers waiting for service i. Once, a customer
obtains service i, it proceeds to the queue for service i + 1.
Under this alternate viewpoint, this multi-dimensional Markov
chain forms a sequence of k queues in tandem. In this setting,
the function ai(y) indicates the arrival of a customer in queue i
due to a departure from queue i− 1.

That is, Y (t) = (Y0(t), . . . , Yk−1(t)) is a sequence of k
queues in tandem driven by Poisson arrivals with rate λ. The
base service rate at queue i is given by γi = (Ni −Ni+1)µ.
Yet, the servers are coupled in the following sense. When one
of the queues is empty, its associated server pools its resources
with the first non-empty queue preceding it. The operation of
such a sequence of queues is depicted in Fig. 3 for two queues.

Since the exact identities of the messages obtained by the
requests are irrelevant for performance evaluation, the reduced
Markov chain Y (t) is well-suited for analysis. We observe that
the state space of the continuous-time Markov process corre-
sponding to any symmetric code remains unchanged. However,
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λ
Y0(t) γ0 Y1(t) γ1

Figure 3. This block diagram displays two queues in tandem with Poisson
arrival rate λ and service rates γ0 and γ1, respectively. The length of queue i
is denoted by Yi(t) for i ∈ {0, 1}. The dashed line from server 1 to server 0
symbolizes the fact that server 1 pools its resources with server 0 when
queue 1 is empty.

their rate matrices are different. This notion is reinforced
below by studying our two archetypal coding schemes.

A. Transition Rates for Repetition and MDS Codes

For requests with i ∈ {0, . . . , k − 1} information symbols,
the respective number of useful servers for block repetition
and MDS codes are equal to

N rep
i = (k − i)n

k
, Nmds

i = (n− i).

As discussed above, the base service rate at queue i − 1 is
given by γi−1 = (Ni−1 −Ni)µ. As such, the base rates for
block repetition coding are given by

γrep
i−1 =

n

k
µ, i ∈ [k], (5)

whereas the base rates for MDS coding can be expressed as

γmds
i−1 =

{
µ, i ∈ [k − 1],

(n− k + 1)µ, i = k.
(6)

Clearly, the base rates differ significantly and they may result
in distinct queueing behaviors. The effective transition rates
change dynamically, as they depend on y through components
equal to zero. These latter rates are obtained by substituting
the expressions above into (4).

VI. PERFORMANCE ANALYSIS

In general, a network of coupled queues may be very
difficult to analyze. Nevertheless, we can take advantage of the
fact that Y (t) represents a sequence of k queues in tandem.
We leverage this property to derive several key results. First,
we find the maximum arrival rate λ for which the Markov
process Y (t) remains positive recurrent in Section VI-A. In
particular, we show that block repetition and MDS coding
with fork-join FCFS scheduling share a same stability region.
Second, we define uncoupled tandem queues that bound the
performance of the coupled queue system represented by Y (t)
in Section VI-B. Third, we propose a decoupled tandem queue
that approximates the behavior of Markov process Y (t) for
symmetric codes in Section VI-C. We use this decoupling
strategy to compute approximations for mean delays and aver-
age queue lengths for both block repetition and MDS coding.
We also explore scaling behavior for these two coding schemes
as the number of servers n becomes large, while the code rate
k/n is kept constant. Finally in Section VI-D, we show that
among the class of symmetric codes, the approximate mean
delay minimizing code is MDS.

A. Stability Regions

We refer to the set of arrival rates for which the process Y (t)
is positive recurrent as the stability region. We use the Foster-
Lyapunov drift conditions to identify the stability region for
a distributed coded system under FCFS fork-join scheduling
employing arbitrary [n, k, d] symmetric code. Let φ : Nk0 →
Nk0 be a bijection such that

φ(y) = (y0, y0 + y1, . . . , y0 + . . .+ yk−1).

We define the following quadratic function V : Nk0 7→ R+ as
a potential or Lyapunov function for process Y (t) in terms of
the bijection φ,

V (y) =
1

2
‖φ(y)‖22 =

1

2

k−1∑
j=0

φj(y)2, y ∈ Nk0 .

When Y (t) = y, admissible transitions are to states ai(y)
where i− 1 ∈ I(y) or i = 0. For these admissible transitions,
we express their impact on function φ(·) as follows,

φ(ai(y)) =

{
φ(y) +

∑k−1
i=0 ei, i = 0,

φ(y)− ei−1, i ∈ [k].

The corresponding rates of transition from state y to state ai(y)
are given by λ for i = 0 and µi−1(y) for i − 1 ∈ I(y).
For Markov process Y (t) with generator matrix Q, the mean
rate of change of function V (Y (t)), termed the mean drift
rate is defined as QV (y) =

∑
y′ Q(y, y′)[V (y′) − V (y)]. For

the given Markov process Y (t), the mean drift rate can be
computed as

QV (y) =

k∑
i=0

Q(y, ai(y))(V (ai(y))− V (y)).

For each level i, the individual potential difference between a
next state and the current state is given by

V (ai(y))− V (y) =

{∑k−1
j=0

(
φi(y) + 1

2

)
, i = 0,

−
(
φi−1(y)− 1

2

)
, i ∈ [k].

Theorem 5. For a distributed storage system with a symmetric
code and fork-join queues with FCFS service, the stability
region is equal to

λ < min

{
Γi
k − i

: i ∈ {0, . . . , k − 1}
}
,

where Γi ,
∑k−1
j=i γj is the useful service rate for level i.

Proof: The mean drift rate of this Lyapunov function V (·)
for continuous-time Markov process Y (t) can be computed in
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terms of the arrival rate λ and the service rates (µi−1(y) : i ∈
[k]) as

QV (y) = λ

k−1∑
i=0

(
φi(y) +

1

2

)
−
k−1∑
i=0

(
φi(y)− 1

2

)
µi(y)

=
kλ

2
+

1

2

k−1∑
i=0

µi(y) +

k−1∑
i=0

φi(y)(λ− µi(y))

=
kλ

2
+

1

2

k−1∑
i=0

µi(y) +R(y)

≤ 1

2
(kλ+ Γ0) +R(y).

The first term on the right-hand-side of the inequality is a
constant. Furthermore, for each i ∈ I(y), we have

k−1∑
j=i

µj(y) =

k−1∑
j=i

γj = Γi. (7)

Recall that φi(y) =
∑i
j=0 yj and, hence, we can get a

new expression for R(y) by interchanging the order of these
summations,

R(y) =

k−1∑
i=0

φi(y)(λ− µi(y)) =

k−1∑
i=0

i∑
j=0

yj(λ− µi(y))

=

k−1∑
j=0

yj

k−1∑
i=j

(λ− µi(y)) =

k−1∑
j=0

yj ((k − j)λ− Γj) .

We emphasize that (7) only holds for j ∈ I(y). Yet, when
j /∈ I(y), yj = 0 and the corresponding summand above
becomes zero. This validates the use of Γj in every summand
on the right-hand-side of the last equality.

If λ < Γj/(k − j), then R(y) is negative for any non-zero
state y ∈ Nk0 , with increasing magnitude as ‖y‖ gets larger. As
such, the mean drift rate is strictly negative and bounded away
from zero for all but finitely many states y ∈ Nk0 . Moreover,
for these latter states, the mean drift rate QV (y) is finite.
Conversely, at the jth stage of the tandem queue, the average
arrival rate is λ and requests need to be processed by the k−j
remaining queues. The total pooled service rate available is
Γj . Therefore, any arrival rate λ that exceeds Γj/(k− j) will
make the queue unstable. Altogether, these results completely
determine the stability region.

We can apply this theorem to find stability regions for block
repetition and MDS coding in a straightforward manner. This
is accomplished in the two corollaries below.

Corollary 6. For a distributed coded storage system operating
under block repetition coding and fork-join queues with FCFS
homogeneous service at rate µ, the stability region is

λ ∈
[
0,
nµ

k

)
. (8)

Proof: The base rates for block repetition coding already
appeared in (5) with γrep

i−1 = µn/k for i ∈ [k]. This yields
Γrep
i = (k − i)µn/k and, as a consequence,

Γrep
i

k − i
=
n

k
µ.

The region of (8) immediately follows by Theorem 5.

Corollary 7. For a distributed coded storage system operating
under MDS coding and fork-join queues with FCFS homoge-
neous service at rate µ, the stability region is

λ ∈
[
0,
nµ

k

)
. (9)

Proof: In this case, the base rates are given in (6). We
can then calculate Γmds

i as follows,

Γmds
i =

k−1∑
j=i

γmds
j = (n− k + 1)µ+

k−2∑
j=i

µ = (n− i)µ.

For i ∈ {0, . . . , k − 1}, this leads to tight inequality

Γmds
i

k − i
=
n− i
k − i

µ ≥ n

k
µ.

This establishes the stability region of (9) by Theorem 5.

B. Bounding Techniques
In this section, we introduce two stochastic processes to

bound the performance of distributed coded systems, in the
sample-path sense. Specifically, we create uncoupled tandem
queues that dominate the evolution of the tandem queue
with dynamic service pooling. It is important to note that
a series of queues in tandem with Poisson external arrivals
and independent exponential service rates is a well-studied
object. Although the departure from one queue becomes the
arrival to the next one, the queue distributions are statistically
independent [37]. In the following lemma, we provide a simple
uniform bound for the service rate at each queue, independent
of the state of the requests at other queues.

Corollary 8. The transition rate Q(y, ai(y)) is bounded below
and above by

γi−1 ≤
ui−1(y)−1∑
j=i−1

γj ≤
k−1∑
j=i−1

γj = Γi−1

for every i− 1 ∈ I(y). Equality always holds for i = k.

Proof: This is immediate from the definition of ui−1(y)
because i ≤ ui−1 ≤ k.

Since the service rate Γi uniformly upper bounds the
dynamic service rate received by queue i in our original
coupled tandem queue, we get the following lower bound on
performance.

Lemma 9 (Lower Bound). Consider a continuous-time
Markov chain X(t) ∈ Nk0 with non-zero transition rates
defined by

Q(y, ai(y)) =

{
λ, i = 0

Γi−11{yi−1>0}, i ∈ [k].

For all arrival rates λ such that the request queue Markov
chain Y (t) ∈ Nk0 is positive recurrent, the tandem queue X(t)
is sample path-wise less congested than Y (t). Furthermore,
the equilibrium distribution of X(t) is given by

π(y) =

k−1∏
i=0

(
1− λ

Γk−1

)(
λ

Γk−1

)yi
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and the mean sojourn time is equal to

W =

k−1∑
i=0

1

Γi − λ
.

Proof: Stochastic dominance originates from the fact that
Markov process X(t) is derived from the process Y (t) by
adding extra service capacity for requests with i pieces. To find
the equilibrium distribution of the process X(t), we recognize
that Markov process X(t) is a sequence of tandem queues.
Then, queue i has Poisson arrivals at rate λ and independent
random service times distributed exponentially with mean
1/Γi [37]. Therefore, the joint distribution of X(t) is the
product of the marginal distribution of each queue Xi(t).

This tandem queue is depicted in Fig. 4.

λ
X0(t) Γ0 X1(t) Γ1

Figure 4. This block diagram displays two queues in tandem with external
arrival rate λ and service rates Γ0 and Γ1, respectively. The number of
requests in X(t) is path-wise smaller than the number of requests in Y (t) at
every time t.

Similarly, we can find an upper bound on the queue sizes in
the actual system by looking at a series of uncoupled queues
with exponential service rates γi at queue i.

Lemma 10 (Upper Bound). Consider a continuous-time
Markov chain X(t) ∈ Nk0 with non-zero transition rates
defined by

Q(y, ai(y)) =

{
λ, i = 0

γi−11{yi−1>0}, i ∈ [k].

For all arrival rates λ < mini∈[k] γi−1, the request queue
Markov chain Y (t) ∈ Nk0 is positive recurrent and the tandem
queue X(t) is sample path-wise more congested than Y (t).
Furthermore, the equilibrium distribution of X(t) is given by

π(y) =

k−1∏
i=0

(
1− λ

γi

)(
λ

γi

)yi
and the mean sojourn time is equal to

W =

k−1∑
i=0

1

γi − λ
.

Proof: Again, stochastic dominance emerges from the
fact that the Markov process X(t) is obtained from Y (t) by
preventing resource pooling and letting servers idle when their
respective queues are empty. In contrast, in the original system,
available servers can transfer their content to requests at lower
levels with fewer data blocks. The equilibrium distribution
associated with process X(t) is dictated by its structure as
a series of tandem queues [37]. Queue i experiences Pois-
son arrivals at rate λ, and it features random service times
distributed exponentially with mean 1/γi. Moreover, the joint
distribution of X(t) is the product of the marginal distribution
of each queue Xi(t).

This tandem queue is depicted in Fig. 5.

λ
X0(t) γ0 X1(t) γ1

Figure 5. This block diagram illustrates two queues in tandem with external
arrival rate λ and service rates γ0 and γ1, respectively. The number of requests
in X(t) is path-wise larger than the number of requests in Y (t) at every
time t.

C. Approximation

Although the upper bound in Lemma 10 is reasonably good
for block repetition codes, it becomes looser for MDS codes,
especially when the arrival rate λ approaches µ. This is due
to the fact that MDS coding heavily prioritizes requests with
more pieces, thereby relying extensively on resource pooling
to drain the system. Since this is not captured adequately by
the decoupled system, the bounds becomes imprecise. Based
on these bounds, it may appear that MDS codes do not perform
as well as block repetition codes because of unequal resource
allocation. In reality, the MDS coding scheme works better
as its flexibility takes advantage of dynamic resource pooling.
This performance improvement can be attributed to the fact
that the extra service available at higher levels can easily
trickle down when the queues are empty. In contrast, the
equal partition of resources among all the levels imposed in
block repetition coding is less suited to this cascading effect.
Unfortunately, this idea is not captured adequately in the two
bounding techniques. Nevertheless, these bounding techniques
and the cascading effect naturally invite the following approx-
imation.

We wish to approximate the original queueing system via a
series of uncoupled queues in tandem, which we denote by

X̃(t) =
(
X̃0(t), . . . , X̃k−1(t)

)
.

As before, we take the external arrival process to be Poisson
with rate λ. The servers feature independent exponential ser-
vice times with rates γ̃i where i ∈ {0, . . . , k−1}. We employ
π̃ to denote the equilibrium distribution of this approximate
system. Under this approximation, each queue i has a Poisson
arrival of rate λ, and independent marginal distribution π̃i.

Values for base rates (γ̃i−1 : i ∈ [k]) and marginal
distributions (π̃i−1 : i ∈ [k]) are determined recursively. The
underlying idea is to compensate for the cascading effect by
shifting the service rates of servers at lower levels in the
system. We start with exponential service rate γ̃k−1 = γk−1
because the last queue never gets additional resources. The
probability distribution of this single queue can be computed
using the single queue approximation of Poisson arrival rate λ
and exponential service rate γ̃k−1. When this queue is empty,
which occurs with probability π̃k−1(0), its processing power
is diverted to level k − 2. The average processing rate at
level k − 2 then becomes γ̃k−2 = γk−2 + γ̃k−1π̃k−1(0). In
turn, marginal distribution π̃k−2 is obtained via the single
queue approximation with Poisson arrivals at rate λ and
approximate exponential service rate γ̃k−2. Continuing this
procedure, taking queues to be independent from one another,
the average service rate associated with queue i − 1 can be
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approximated by applying the recursion

γ̃i−1 =

{
γk−1, i = k

γi−1 + γ̃iπ̃i(0), i ∈ [k − 1].

At every step, marginal distribution π̃i and the probability of
queue i being empty is obtained through the single queue
approximation with arrival rate λ and exponential service rate
γ̃i.

For this approximate system, the service rate γ̃i−1 assigned
to queue i − 1 corresponds to its base service rate γi−1 plus
the rates inherited from its upstream neighbors when they
are empty. We note that the approximated rates can also be
unraveled; for i ∈ [k − 1],

γ̃i−1 = γi−1π̃(yi > 0) + (γi−1 + γi)π̃(yi = 0, yi+1 > 0)

+ · · ·+ (γi−1 + · · ·+ γk−1)π̃(yi = 0, . . . , yk−1 = 0).

Once defined, Markov chain X̃(t) can be characterized fully,
and its stationary distribution admits a simpler form. These
results appear in Theorem 11.

Theorem 11 (Approximation). Consider a continuous-time
Markov chain X̃(t) ∈ Nk0 with non-zero transition rates
defined by

Q(y, ai(y)) =

{
λ, i = 0

γ̃i−11{yi−1>0}, i ∈ [k].

For all arrival rates λ < mini∈[k] γ̃i−1, the Markov process
X̃(t) is positive recurrent, and the equilibrium distribution for
this Markov process is given by

π̃(y) =

k−1∏
i=0

(
1− λ

γ̃i

)(
λ

γ̃i

)yi
.

The mean sojourn time of a request is equal to

W̃ =

k−1∑
i=0

1

γ̃i − λ
=

k−1∑
i=0

1

Γi − (k − i)λ
.

Proof: We observe that the Markov process X̃(t) is a
series of uncoupled queues in tandem. We know that the joint
distribution of the process X̃(t) is the product of the marginal
distribution of each queue X̃i(t). Every queue i is subject to a
Poisson arrival process at rate λ and exponential service with
rate γ̄i. Thus, for λ < mini∈[k] γ̃i−1 such that the process X̃(t)
is positive recurrent, the marginal distribution π̃i of queue i is

π̃i(yi) =

(
1− λ

γ̃i

)(
λ

γ̃i

)yi
.

We note that

γ̃iπ̃i(0) = γ̃i

(
1− λ

γ̃i

)
= γ̃i − λ.

Hence, we can inductively compute the total service rate to
queue i, leading to close-form expression

γ̃i−1 =

{
Γi−1 − (k − i)λ, i ∈ [k − 1]

Γk−1, i = k,

where Γi =
∑k−1
j=i γj , as defined in Section VI. The statement

of the theorem follows.
Below, we derive expressions for the mean sojourn times

associated with the approximate system X̃(t) under block
repetition and MDS coding. These expressions are especially
useful when k and n are large.

Remark 12 (Mean sojourn time for approximate system under
block repetition coding). The mean sojourn time of a request
in X̃rep(t) under block repetition coding is equal to

W̃ rep =

k−1∑
i=0

1

(k − i)(nkµ− λ)
.

This result is obtained by computing Γrep
i using the base rates

for block repetition coding found in (5), and then substituting
the resulting expressions into the equation for mean sojourn
time given in Theorem 11. From the integral bounds on the
Harmonic sum, we know that log(k+1) 6

∑k
t=1

1
t 6 log k+

1, and we can write
k
nµ log(k + 1)

(1− kλ
nµ )

6 W̃ rep 6
k
nµ (log k + 1)

(1− kλ
nµ )

.

Remark 13 (Mean sojourn time for approximate system under
MDS coding). The mean sojourn time of a request in Xmds(t)
under MDS Coding is given by

W̃mds =

k−1∑
i=0

1

(k − i)
(
µn−ik−i − λ

) .
This argument is similar to that of Remark 12. First, use (6) to
find expressions for Γmds

i . Then, substitute these expressions
into the equation for mean sojourn time in Theorem 11.
From the integral bounds on the sum

∫ k+1

1
dx

µ(n−k)+(µ−λ)x 6∑k
t=1

1
µ(n−k)+(µ−λ)t 6

∫ k
0

dx
µ(n−k)+(µ−λ)x , we can write

1

µ− λ
log

1− (k+1)λ
(n+1)µ

1− λ+kµ
(n+1)µ

 6 W̃mds 6
1

µ− λ
log

(
1− kλ

nµ

1− k
n

)
.

If we keep the code-rate k
n and the system load kλ

nµ fixed,
then we infer from these results, that the waiting time for block
repetition coding increases logarithmically with the number
of servers n, whereas that of the MDS coded system remains
essentially constant.

D. Delay Minimizing Coding Scheme

We are interested in finding the optimal coding scheme that
minimizes the mean file download time for Poisson arrivals
of requests, with i.i.d. memoryless service at each cache, and
fork-join FCFS scheduling. In general this question remains
open, however we can answer this for the class of [n, k, d]
symmetric coding schemes exploiting the tight approximations
for mean sojourn times developed in Section VI-C.

Assume that data blocks are delivered at each server accord-
ing to an exponential process with rate µ, independent of one
another. Then, the request queue for such a system reduces to
a tandem queue with resource pooling via cascading. Every
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queue in the reduced model has a dedicated base service rate
of γi, and the rate vector γ ∈ Rk+ belongs to the set

A ,

γ ∈ Rk+ : γj ≥ µ,
k−1∑
j=0

γj = nµ, λ(k − i) <
k−1∑
j=i

γj

 .

These three conditions correspond to the service available to
individual queues in the reduced model is at least equal to one
dedicated server, the total available service rate being equal to
the aggregate resources of all the servers combined, and the
allocation fulfilling the stability condition for arrival rate λ.
Equivalently, we can write this collection as

A =
{
γ ∈ Rk+ : Γ0 = nµ, λ(k − i) < Γi ≤ (n− i)µ

}
.

Under these constraints, we are interested in identifying the
best allocation of service among the queues in the tandem
sequence; that is, the allocation that minimizes the approxima-
tion for the mean sojourn time of a request. Not so surprisingly,
MDS coding is optimal in that sense.

Theorem 14 (Delay minimizing code). The MDS coding
scheme minimizes the approximate mean sojourn time for a
fork-join queueing system with identical exponential servers
among all symmetric codes.

Proof: Since Γ0 = nµ is fixed, the minimizer of the
approximate mean sojourn time in X̃(t) is given by

γ∗ = arg min

{
k−1∑
i=1

1

Γi − (k − i)λ
: γ ∈ A

}
.

The objective function is a decreasing function of free vari-
ables {Γi : i ∈ [k − 1]}, and hence the minimum is achieved
when Γ∗i = (n− i)µ. This allocation corresponds to base rates

γ∗i−1 =

{
µ, i ∈ [k − 1],

(n− k + 1)µ, i = k,

which match the service rates associated with MDS coding,
as seen in (6).

VII. NUMERICAL STUDIES

System parameters for our numerical study are selected,
partly, to enable a comparison with previously published
results [14], [21]. We choose the random service time at every
cache to be distributed exponentially with rate µ = k/n,
and these processes are independent from one another. We
emphasize that the service rate is proportional to the number
of pieces, and inversely proportional to the number of caches.
This normalization step ensures that the system load is equal
to the arrival rate λ, and the stability region is λ < 1 for
block repetition and MDS codes. Further, it enables the easy
comparison of systems with different design parameters. In a
sense, the numerator k accounts for the size of data downloads.
If a file is partitioned into k blocks, then individual caches
should be able to serve blocks at k times the rate of file
downloads. Similarly, the denominator n balances processing
power. For a given performance budget, one should be able to
choose between having one server with a nominal rate or n

servers each with 1/n times the nominal rate. Altogether, this
yields a normalized block service rate of k/n.

We adopt a (9, 3) linear code for nine servers and three
message pieces. One of our objectives in this work is to
come up with analytical bounds and approximations to be able
to quantify the latency gains obtained by various distributed
storage codes. Figure 6 shows that the analytical bounds for
block repetition coding are uniformly good over all stable
system loads. This is due to the symmetry of service available
to all partially fulfilled requests. Contrastingly, we see in Fig. 7
that the upper bound is not so good for MDS coding, and the
lower bound also becomes loose as the load increases. The
approximations, on the other hand, work very well for both
coding schemes.
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Figure 6. This graph shows mean sojourn time for a (9, 3) block repetition
scheme as a function of arrival rate. It also displays the closed-form approx-
imation, along with several upper and lower bounds.
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Figure 7. This graph shows mean sojourn time for a (9, 3) MDS scheme
as a function of arrival rate. It also displays the closed-form approximation,
along with several upper and lower bounds.

Figure 8 compares the mean sojourn times of a request
with respect to the system load, for the two systems under



13

consideration: Block repetition and MDS coding. As antici-
pated, the more sophisticated MDS coded system outperforms
the implementation with block repetition coding. Also, we
note that the approximated mean sojourn times, being quite
close to true performance, reveal the potential gains associated
with coded systems. This is especially important for systems
with intricate coding schemes and multiple servers because,
in such situations, the numerical QBD-based bounds adapted
from [20], [21] become hard to evaluate whereas the approx-
imations remain computationally tractable.
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Figure 8. This graph provides a comparison of the (9, 3) MDS and (9, 3)
block repetition schemes. Due to its greater flexibility, the MDS coding
scheme performs uniformly better, showcasing significant gains. This trend
is accurately captured by the proposed closed-form approximations, which
are computationally tractable, even for large systems.

To further explore the behavior of distributed coded systems,
we consider the case where the number of servers n increases
while the code rate k/n = 0.5 is maintained. The rate of
the Poisson arrival process is set to λ = 0.3 throughout. The
mean sojourn times of a request for block repetition and MDS
coding as functions of n appear in Fig. 9. Mean delay for
MDS coding is essentially constant as the number of servers
n grows; in contrast, it raises significantly for block repetition
coding. Thus, MDS coding is more amenable to scaling than
block repetition coding. This is very much aligned with the
conclusions we draw from Remark 12 and Remark 13.

Finally, we explore performance as a function of message
length or code rate. In this case, we fix the number of servers
at n = 24, and we use a Poisson arrival rate of λ = 0.45. We
vary the message length k for both block repetition and MDS
codes. Figure 10 displays mean sojourn times for a request as
functions of message length. We observe that the mean delay
increases monotonically with reduced redundancy for block
repetition coding. However, it features a unique minimum
for MDS coding. Furthermore, MDS performance is robust
to redundancy reduction, clearly outperforming the block
repetition scheme for most rates. Altogether, MDS coding can
be utilized for efficient storage without significantly impacting
latency.

There are no tight closed-form approximations or bounds
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Figure 9. This graph displays the mean sojourn times of a request for MDS
and block repetition coding as the number of servers n increases. Throughout,
the code rate is kept constant at k/n = 0.5 and the arrival rate is set to λ =
0.3. MDS coding is more suitable for scaled systems than block repetition
coding.
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Figure 10. For a fixed arrival rate λ = 0.45 and number of servers n = 24,
this graph plots mean sojourn times for MDS and block repetition coding as
message length k increases. Again, MDS codes perform significantly better
than block repetition codes.

available for (n, k) fork-join queue for general independent
service times and Poisson arrival of requests, and is an area
of future interest. However, we study the mean sojourn time
for the general service times numerically and compare the
qualitative behavior to the exponential service case. Towards
this end, we selected two non memoryless service distribu-
tions: (i) shifted-exponential service with shift c = 0.5 and
exponential rate µ such that the mean service time at each
server is c+ 1

µ = n/k, and (ii) Pareto distribution with shift
xm = 0.6n/k and shape α such that the mean service time
xmα
(α−1) = n/k. These choices maintain the mean service time
at each server identical to the case of exponential service.

We have plotted the mean sojourn time for (9, 3) MDS
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and block repetition coded system for i.i.d. shifted-exponential
service times and Pareto service times with increasing arrival
rates in Fig. 11 and Fig. 12, respectively. As expected the
mean sojourn time increases as the arrival rate increases,
and MDS coded system outperforms block repetition coded
system. Numerical studies suggest that supported arrival rate
region for stability is strictly less than unity for both shifted-
exponential and Pareto service.

Mean sojourn time for MDS and block repetition coded
system for shifted-exponential and Pareto service times with
increasing number of servers n is plotted in Fig. 13 and
Fig. 14, respectively. For both the cases, the code rate k/n =
0.5 and the arrival rate λ = 0.3 is maintained. The qualitative
behavior of mean sojourn time for MDS and block repetition
coded system for these two non-memoryless services remain
similar to the memoryless service case. We observe that as
the number of servers n increase, the mean sojourn time for
MDS coded system remains unchanged, while it increases
logarithmically in n for the block repetition coded system.
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Figure 11. This graph displays the mean sojourn times of a request for
(9, 3) MDS and (9, 3) block repetition coding with shifted exponential service
distribution (with shift c and rate µ) as the arrival rate λ increases. Throughout,
the service mean is kept constant at c+ 1

µ
= n

k
and the shift is set to c = 0.5.

VIII. CONCLUSION

In this work, we propose an analytical framework to study
the latency redundancy tradeoff for distributed coded sys-
tems with FCFS fork-join scheduling. The focus is largely
on symmetric codes and homogeneous servers. This novel
framework enables a complete characterization of the Markov
process that governs the evolution of this distributed system.
We also propose two stochastically dominating processes that
bound the performance of the actual system. These dominating
processes provide uniform upper and lower bounds on the
mean sojourn time of a request in the queue, for all system
loads and all symmetric coding schemes. These bounds are
good for block repetition coding, though they are not so tight
for MDS coding, especially at higher loads. Together, these
bounds naturally give rise to a stochastic approximation for
the behavior of distributed coded systems. This approximation
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Figure 12. This graph displays the mean sojourn times of a request for (9, 3)
MDS and (9, 3) block repetition coding with Pareto service distribution (with
shift xm and shape α) as the arrival rate λ increases. Throughout, the service
mean is kept constant at xmα

(α−1)
= n

k
and the shift is set to xm = 0.6n

k
.
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Figure 13. This graph displays the mean sojourn times of a request for MDS
and block repetition coding with shifted exponential service distribution as the
number of servers n increases. Throughout, the code-rate is kept constant at
n/k = 2, the shift is fixed as c = 0.5, and the arrival rate is set to λ = 0.3.

seems very accurate for a range of system loads. Using this
approximation, it is possible to make quantitative statements
about the delay performance of the distributed coded systems
for various system parameters and coding schemes. For in-
stance, this approximation technique adequately captures the
mean delay performance gains for MDS coding over block
repetition coding. We note that MDS codes minimize the
approximate mean delay among all symmetric codes.

We list the key insights derived for a symmetric coded
system with Poisson arrival of requests for k fragments,
encoded and stored on n i.i.d. and memoryless servers, and
(n, k) fork-join scheduling.

1) This system is equivalent to a system of k pooled tandem
queues.

2) At each stage i ∈ {0, . . . , k − 1}, there is an effective
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Figure 14. This graph displays the mean sojourn times of a request for MDS
and block repetition coding with Pareto service distribution as the number of
servers n increases. Throughout, the code-rate is kept constant at n

k
= 2, the

shift is fixed as xm = 0.6n
k

, and the arrival rate is set to λ = 0.3.

arrival rate of λ when the system is stable, since the
output rate from a queue is equal to the input rate.

3) We denote the number of useful servers for request with
i pieces as Ni. Then stage k − 1 has Nk−1 dedicated
parallel servers.

4) At each stage i < k− 1, there are Ni−Ni+1 dedicated
servers, plus all the available servers from stage i+ 1 if
it has an empty queue.

For exponential service, it turns out that the system is well
approximated by considering aggregate arrival rate of (k− i)λ
at each stage i corresponding to the required number of pieces
(k − i), and aggregate service rate (n− i)µ corresponding to
the parallel number of useful servers.

There exist several potential avenues for future research.
Many such opportunities entail relaxing some of the as-
sumptions made in this article including Poisson arrivals,
homogeneous exponential service, symmetric coding, and in-
dependence among caches. Additional possibilities stem from
incorporating new developments in distributed storage such
as locally repairable codes or multi-file scenarios. Finally,
looking at large deviations for distributed coded systems is
also an interesting option for future work.
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APPENDIX A
PROOF OF THEOREM 2

Recall that S(t) is a continuous-time Markov process with
a discrete state space. It suffices to make sure that these
properties are maintained during state transitions in the jump
chain of S(t) to show that the theorem holds at any time t.
As such, we prove this result using mathematical induction at
jump instants, focusing on the following key properties:

1) |S1(t)| > |S2(t)| > · · · > |Sr(t)(t)|,
2) M(S1(t)) ⊆M(S2(t)) ⊆ · · · ⊆M(Sr(t)(t)).

As a preliminary step in establishing the theorem, we show
that, if properties 1 and 2 hold and there are two requests with
message subsets of the same size, then the corresponding sets
of useful servers are identical. Assume |Si(t)| = |Si+1(t)|
for some i ∈ {1, . . . , r(t) − 1}. It follows that |M(Si)(t)| =
|M(Si+1)(t)| from code symmetry. Combining this statement
with the set relation implied by property 2, i.e., M(Si(t)) ⊆
M(Si+1(t)), we gather that, being finite, these two sets of
useful servers must be identical.

We are ready to proceed with the induction argument. The
base case for this system is established at the onset when the
system is empty. When there are no requests in the system,
the state S = e and properties 1 and 2 are vacuously true. Fur-
thermore, at the next instant in the jump chain, when a request
arrives, the state changes to (∅). Again, the desired properties
continue to hold trivially, with r = 1, S1 = ∅,M(S1) = [n].

At this point, we turn to the inductive step for r > 0
requests. Suppose that the current state is S = (S1, . . . , Sr),
and assume the two aforementioned properties hold for this
particular state. We wish to show that these properties continue
to hold for the next state in the jump chain. There are three
distinct types of possible transitions to consider. First, if the

jump instant corresponds to a new arrival, then the next state
is given by

S ′ = (S1, . . . , Sr, ∅).

Thus, it is evident that the two properties are maintained for
this type of transitions.

As a second case, consider the situation when a piece
is delivered by server j, but this action does not lead to
the completion of a request. This piece will be received by
request i where

j ∈M(Si) \M(Si−1). (10)

Note that there is at most one such request by property 2.
Moreover, this property necessarily implies that M(Si−1) is
a strict subset of M(Si) and |Si| < |Si−1|. In this case, the
next system state can be expressed as

S ′ = (S1, . . . , Si ∪ {j}, . . . , Sr).

Property 1 necessarily holds because |Si|+ 1 6 |Si−1|. Since
j /∈M(Si−1), the set of useful servers for the partially fulfilled
requests with information subsets Si−1 ∪ {j} and Si−1 are
identical. Further, from the definition of useful servers, we
have M(T ∪ U) = M(T ) ∩M(U). These two facts together
imply

M(Si−1) = M(Si−1 ∪ {j}) ⊆M(Si ∪ {j}).

This then leads to property 2 for next state S ′.
The third type of transitions occurs when the request at the

head of the queue has k − 1 pieces and it acquires a useful
piece, leading to its departure from the system. In this case,
the state changes to

S ′ = (S2, . . . , Sr).

The two properties are maintained through this type of tran-
sitions because the necessary pairwise conditions associated
with properties 1 and 2 are inherited from the previous state,
albeit with a shift in labeling.

Since the three types of transitions discussed above account
for all possible transitions in the jump chain, we conclude that
the inductive step is true. Consequently, properties 1 and 2
are valid at any time t for distributed storage systems with
symmetric codes and fork-join queues with FCFS service, as
claimed.
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