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Abstract—A detection problem in sensor networks is considered, where
the sensor nodes are placed on a line and receive partial information about
their environment. The nodes transmit a summary of their observations
over a noisy communication channel to a fusion center for the purpose of
detection. The observations at the sensors are samples of a spatial stochastic
process, which is one of two possible signals corrupted by Gaussian noise.
Two cases are considered: one where the signal is deterministic under each
hypothesis, and the other where the signal is a correlated Gaussian process
under each hypothesis. The nodes are assumed to be subject to a power den-
sity constraint, i.e., the power per unit distance is fixed, so that the power
per node decreases linearly with the node density. Under these constraints,
the central question that is addressed is: how dense should the sensor array
be, i.e., is it better to use a few high-cost, high-power nodes or to have many
low-cost, low-power nodes? An answer to this question is obtained by re-
sorting to an asymptotic analysis where the number of nodes is large. In this
asymptotic regime, the Gärtner-Ellis theorem and similar large-deviation
theory results are used to study the impact of node density on system per-
formance. For the deterministic signal case, it is shown that performance
improves monotonically with sensor density. For the stochastic signal case,
a finite sensor density is shown to be optimal.

Index Terms—Decentralized detection, decision-making, distributed de-
tection, multisensor systems, sensor network, wireless sensors.

I. INTRODUCTION

Distributed sensor systems with the capacity to collect, analyze, and
transmit environmental data have the potential to enable the next rev-
olution in information technology. The rising interest in such systems
originates primarily from the low cost of emerging miniature sensing
technologies, together with the wide availability of the computing re-
sources necessary to handle complex data. This correspondence fo-
cuses on the design of wireless sensor systems in the context of signal
detection. The system model considered throughout consists of a set
of geographically dispersed sensor nodes along with a central entity,
called fusion center. The sensor nodes gather information about the
properties or the likely occurrence of an event of interest, and then relay
a summary of their observations to the fusion center. In turn, the fusion
center processes the received information and makes a final decision.

The literature on decentralized detection, and more recently on de-
tection applications in wireless sensor systems, is vast. In decentral-
ized systems, the task of the fusion center can be reduced to a classical
hypothesis testing problem where the information received from the
sensor nodes is viewed as a vector observation [1], [2]. Decision tests
for the fusion center are therefore well-understood and can often be de-
rived using standard techniques from statistics.
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In the canonical decentralized detection problem formulation,
observations at the sensor nodes are individually compressed to one
of finitely many messages prior to being sent to the fusion center.
The communication channel between each sensor node and the fusion
center is assumed to be noiseless and, accordingly, the transmitted
information is received reliably at the fusion center. The canonical
design problem therefore consists of selecting a local quantization
function for every sensor node. A remarkable result in decentralized
detection is the fact that threshold rules on local likelihood ratios are
optimal for the class of detection problems where observations are
conditionally independent, given each hypothesis [2]. This property
drastically reduces the search space for an optimal collection of local
quantizers and, although the resulting problem is not necessarily easy,
it is amenable to analysis in many contexts [3], [4].

While most results on the topic of decentralized detection assume
that observations are conditionally independent, little is known about
the more general problem where observations are conditionally de-
pendent. Different approaches have been employed to study the latter
problem. Willet et al. [5] present a thorough analysis for the binary
quantization of a pair of dependent Gaussian random variables. Their
findings indicate that even in this simple setting, an optimal detector
may exhibit very complicated behavior. Kam et al. [6] examine the
structure of an optimal fusion rule for the more encompassing scenario
where multiple binary sensors observe conditionally dependent random
variables. Chen and Ansari [7] propose an adaptive fusion algorithm for
an environment where the observations and local decisions are depen-
dent from one sensor to another. This adaptive approach requires the
knowledge of fewer system parameters. Additional studies explore the
effects of correlation on the performance of distributed detection sys-
tems [8], [9].

Another common postulate in decentralized detection is the assump-
tion that the information sent by every sensor node can be conveyed
reliably to the fusion center. In the context of wireless sensor systems,
this assumption of reliable communication may fail since data is trans-
mitted over noisy channels and sensor nodes are subject to stringent
power constraints. We consider an alternative framework where the fu-
sion center only has access to a noisy version of the transmitted mes-
sages. The quality of the received information depends on the power
available at the sensor nodes and on the format of the transmitted mes-
sages.

In general, wireless sensor systems offer much flexibility in their de-
signs. A sensor network may be composed of legions of low cost sensor
nodes, or it may contain only a few high-quality, high-price sensor as-
sets. It is clear that adding sensors to an existing network can only im-
prove overall performance. However, during the initial design phase of
a system, it is natural to ask how to best allocate the available system
resources. For instance, is it better to use a few high-cost, high-power
nodes or to have many low-cost, low-power sensor nodes? A partial
answer to this question can be found in [10], [11], where it is shown
that having more low-cost sensors usually performs better provided that
the sensor observations remain conditionally independent regardless of
sensor density. Yet, as sensor nodes are packed more densely in a finite
area, it is reasonable to expect their observations to become increas-
ingly correlated.

In this work, we seek to provide guidelines on how dense a sensor
system should be for the scenario where correlation among observa-
tions increases with sensor node density. Specifically, we consider a
scenario where the sensor nodes are placed on a line, and the obser-
vations at the sensors are samples of a spatial stochastic process on
the line. We assume that the nodes are subject to a power density con-
straint. That is, the power per unit distance is fixed, so that the power

0018-9448/$20.00 © 2006 IEEE



5100 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006

per node decreases linearly with node density. We then employ math-
ematical instruments from large deviation theory and statistical signal
processing to derive guidelines relating sensor density, resource allo-
cation, and overall system performance.

II. SYSTEM MODEL

We study the basic scenario where the observed stochastic process
consists of one of two possible signals corrupted by additive noise.
The two possible signals, which we denote by X0(d) and X1(d), are
assumed to be 1-dimensional Gaussian stochastic processes. As such,
the finite-dimensional distributions of the two processes are determined
by the expectation functions mj(d) = E[Xj(d)] and the covariance
functions

�j(c; d) = E[(Xj(c)�mj(c))(Xj(d)�mj(d))]; j = 0; 1: (1)

The observation noise process, denoted by V(d), is assumed to be
a zero-mean stationary Gaussian process with covariance function
�v(c; d). The continuous parameter d 2 [0;1) represents the distance
from the origin on the positive real line, with the understanding that
the nodes are positioned at various points along a straight line.

For a finite number of sensor nodes, let 0 � d1 < � � � < dn < 1
denote the position of every node. The random variable observed at
each sensor then consists of one of two possible signals corrupted by
additive noise

Yk = Xj;k + Vk; k = 1; . . . ; n (2)

where we use the convenient notation X0;k = X0(dk), X1;k =
X1(dk), and Vk = V(dk). We study the important special class
of sensor nodes where each unit retransmits an amplified version of
its own observation to the fusion center. This class of sensor nodes
is suitable for analysis. Furthermore, it is known to perform well
when the sensor observations are corrupted by additive noise and the
observed signal-to-noise ratio is low [11]. In this setup, a node acts as
an analog relay amplifier with a transmission function given by


a(Yk) = aYk; k = 1; . . . ; n (3)

where a is a positive amplification factor. Messages are transmitted
over wireless communication channels and the fusion center receives
information Uk from sensor node k of the form

Uk = aYk +Wk; k = 1; . . . ; n: (4)

In vector notation, we write

U = aY +W (5)

where U = (U1; . . . ; Un)
T is the received information, Y =

(Y1; . . . ; Yn)
T is a vector of spatially separated observations, and

W = (W1; . . . ;Wn)
T represents communication noise. The noise

vector W is assumed to have a joint multivariate Gaussian distribution
and to be independent of the observation noise vector V . It follows
that the received information vector U is jointly Gaussian, and thus it
is characterized completely by its mean vector mj = E[U jHj ] and its
covariance matrix �j = Var(U jHj).

The objective of the system is to decide which of the two possible
signals is present. It is well-known that the class of likelihood-ratio
tests, in which the normalized log-likelihood ratio is compared to a

threshold, is optimal [12], [13]. A threshold decision rule on the nor-
malized log-likelihood ratio L(u) is an indicator function 1l[�;1) :
R ! f0; 1g where

1l[�;1)(`) =
0; ` 2 (�1; � )

1; ` 2 [�;1)
(6)

with the interpretation thatH1 is accepted if 1l[�;1) (L (u)) = 1, while
H0 is accepted otherwise. The performance of a decision test 1l[�;1)(�)
is characterized by the error probabilities

� =E[1l[�;1)(L(U))jH0] (7)

� =E[1l(�1;�)(L(U))jH1]: (8)

In the Neyman–Pearson problem formulation, the goal is to minimize
� subject to a constraint on �. Alternatively, the Bayes problem formu-
lation aims at minimizing the probability of error at the fusion center
Pe = �P (H0)+�P (H1). The remainder of the current section is de-
voted to reviewing pertinent results from statistics and to the introduc-
tion of the necessary notation for the large-deviations analysis of the
detection problem at hand. In particular, we examine two interesting
special cases of the Bayesian problem. The reader is referred to Van
Trees [14] and Poor [12] for a more elaborate treatment of detection
theory.

A. Detection of Deterministic Signals

Consider the scenario where the two signals X0(d) and X1(d) are
known. In this case, the covariance of U is independent of the true
hypothesis and an optimal procedure for deciding between hypotheses
H0 and H1 is a threshold test on the statistics

T1(U)
1

n
(m1 �m0)

T��1
U (9)

where � = �0 = �1. Note that T1(U) is a Gaussian random variable,
as can be deduced from the form of (9).

Suppose that the two possible signals are given by X1(d) =
�X0(d) = m > 0. Assume that the observation noise has covariance
function �v(c; d) = �2�jd�cj. Also assume that the sensor nodes are
equally spaced with dk = d(k � 1) for k = 1; . . . ; n and d > 0. Let
W1; . . . ;Wn be an independent sequence of random variables with
marginal N 0; �2

w . Then, m1 = �m0 = a(m; . . . ;m) and

� = a
2
�
2

1 �d � � � �(n�1)d

�d 1 � � � �(n�2)d

...
...

. . .
...

�(n�1)d �(n�2)d � � � 1

+ �
2
wI: (10)

It follows that the expected value of T1(U) is

E[T1(U)] = �
2a2m2

n
1T��11 (11)

where the leading sign is negative under hypothesis H0 and positive
under H1. Its variance is equal to

Var(T1(U)) =
4a2m2

n2
1T��11: (12)

In the decision rule of (9), the covariance matrix � is assumed to
be known at the receiver. If the two signals X0(d) and X1(d) are
known but the noise structure and hence the covariance matrix � are
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not known, a decision can be made by applying a threshold test on the
decision statistics

T2(U)
1

n
(m1 �m0)

T
U: (13)

Again, T2(U) is a Gaussian random variable. It is therefore determined
by its mean

E[T2(U )] = �2a2m2 (14)

with negative sign under hypothesis H0 and positive under H1, and
variance

Var(T2(U)) =
4a2m2

n2
1T�1: (15)

B. Detection of Stochastic Signals in Gaussian Noise

The second case we examine is the specific problem where the
system attempts to detect the presence of a stochastic signal in
Gaussian noise. In this case, X0(d) = 0 and X1(d) is a zero-mean
Gaussian process with covariance function �x(c; d). An optimal
detection procedure is to apply a threshold test on the quadratic form

T3(U) =
1

n
U
T ��10 � ��11 U: (16)

This is the well-known quadratic detector.
Suppose that X1(d) is a zero-mean Gaussian process with covari-

ance function �x(c; d) = �2�jd�cj, and that the sensor nodes are
equally spaced with dk = d(k�1) for k = 1; . . . ; n. Note that the def-
inition of � above differs from its use in previous section. Here, � rep-
resents a measure of signal covariance. This intentional abuse of nota-
tion simplifies mathematical expressions derived in the later parts of the
correspondence. Context should help prevent confusion in the meaning
of �. Assume that V1; . . . ; Vn is an independent sequence of random
variables with marginal N 0; �2v . Similarly, let W1; . . . ;Wn be an
independent sequence of random variables with marginal N 0; �2w .
Then, �0 = a2�2v + �2w I and

�1 = a
2
�
2

1 �d � � � �(n�1)d

�d 1 � � � �(n�2)d

...
...

. . .
...

�(n�1)d �(n�2)d � � � 1

+ a
2
�
2
v + �

2
w I: (17)

The correlation between observations increases with sensor proximity.
To analyze the performance of this detector, we parallel an argument
presented by Poor [12] and turn to linear algebra. Since �1 is sym-
metric and positive definite, all of its eigenvalues  1; . . . ;  n are pos-
itive real numbers and the corresponding eigenvectors r1; . . . ; rn can
be chosen to be orthonormal. The covariance matrix �1 and its inverse
can therefore be written as

�1 =

n

k=1

 krkr
T
k and ��11 =

n

k=1

 
�1
k rkr

T
k : (18)

We can rewrite (16) as

T3(U) =
1

n

n

k=1

a
2
�
2
v + �

2
w

�1
�  

�1
k U

T
rkr

T
kU

1

n

n

k=1

~U2
k (19)

where ~U1; . . . ; ~Un are independent zero-mean Gaussian random vari-
ables, with variances

H0 : Var ~U2
k =1�

a2�2v + �2w

 k
~�20;k;

k =1; . . . ; n (20)

H1 : Var ~U2
k =

 k

(a2�2v + �2w)
� 1 ~�21;k;

k =1; . . . ; n: (21)

A threshold test on the simpler, suboptimal statistics

T4(U) =
1

n
U
T
U (22)

can also be used. In this case

T4(U) =
1

n
U
T

n

k=1

rkr
T
k U

=
1

n

n

k=1

U
T
rkr

T
kU

1

n

n

k=1

�U2
k (23)

where �U1; . . . ; �Un are also independent zero-mean Gaussian random
variables, with variances

H0 : Var �U2
k = a

2
�
2
v + �

2
w ��20;k;

k =1; . . . ; n (24)

H1 : Var �U2
k = k ��21;k;

k =1; . . . ; n: (25)

III. LARGE SYSTEM ANALYSIS

A wireless sensor network may only contain a few nodes, or it may
contain a large number of nodes. While it is typically easy to ana-
lyze the performance of small networks (see, e.g., [15]), evaluating the
performance of larger networks is often more challenging. In this sec-
tion, we introduce useful mathematical instruments from large-devia-
tion theory. These tools will prove useful in assessing the performance
of large sensor systems.

For any reasonable system, the probability of detection error at the
fusion center goes to zero exponentially fast as the total number of
sensor nodes contained in the system tends to infinity. It is then natural
to compare different system designs based on their exponential rate of
convergence to zero

� lim
n!1

logPe;n
n

: (26)

The use of large system asymptotics yields guidelines and heuristics
that can be applied to all sufficiently large systems. Moreover, design
guidelines derived from such limiting regimes, where the number of
sensor nodes in the system becomes large, are especially relevant in
the context of sensor networks because some of these networks are
envisioned to comprise thousands of nodes.

A. Large Deviation Principle

Consider a sequence of real random variables T (1); T (2); . . . where
T (n) has probability law �n and logarithmic moment generating func-
tion

�n(�) = logE[e�T ]: (27)

The following assumption is imposed to insure that the sequence
�1; �2; . . . satisfies the large deviation principle.
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Assumption 1: For� 2 R, the logarithmic moment generating func-
tion

�(�) lim
n!1

1

n
�n(n�) (28)

exists as an extended real number. For D� f� 2 R : �(�) < 1g,
the origin belongs to the interior of D�, �(�) is differentiable in the
interior of D�, and �(�) is steep. That is

lim
`!1

jr�(�`)j =1 (29)

whenever f�`g is a sequence in the interior of D� converging to a
boundary point.

Under Assumption 1, the large deviation principle satisfied by the
sequence of measures �1; �2; . . . can be characterized in terms of the
Fenchel–Legendre transform of �(�),

��(z) sup
�2R

f�z � �(�)g: (30)

Theorem 1 (Gärtner–Ellis): Let Assumption 1 hold. For any closed
set F � R

lim sup
n!1

1

n
log�n(F ) � � inf

z2F
��(z) (31)

and for any open set G � R

lim inf
n!1

1

n
log�n(G) � � inf

z2G
��(z): (32)

A detailed proof of this theorem can be found in [13].

B. Detection of Deterministic Signals

Suppose that the two possible signals are known with X1(d) =
�X0(d) = m > 0. Assume that the sensor nodes are equally
spaced with dk = d(k � 1) for k = 1; . . . ; n. Also, assume that
the observation noise has covariance function �v(c; d) = �2�jd�cj,
and let W1; . . . ;Wn be an independent sequence of random variables
with marginal N 0; �2w . Then, the optimal decision procedure for
choosing between hypotheses H0 and H1 is a threshold test on

T
(n)
1 (Un) =

1

n
(m1;n �m0;n)

T��1n Un: (33)

The corresponding logarithmic moment generating functions as de-
fined in (28) can be shown to equal

�(�) = �2�a2m2
�
2
1 + 2�2a2m2

�
2
1 (34)

where

�
2
1

1� �d

�2w(1� �d) + a2�2(1 + �d)
: (35)

A sketch of the proof is presented in Appendix. These two logarithmic
moment generating functions are obviously convex and essentially
smooth, i.e., Assumption 1 holds. We conclude, by Theorem 1, that
the sequence

T
(1)
1 (U1); T

(2)
1 (U2); . . . (36)

satisfies the large deviation principle with good rate functions

��(z) = sup
�2R

� z � 2a2m2
�
2
1 � 2�2a2m2

�
2
1

=
z � 2a2m2�21

2

8a2m2�21
: (37)

It follows that � = 0 achieves the best possible error exponent

� lim
n!1

1

n
logP (n)

e =
a2m2(1� �d)

2�2w(1� �d) + 2a2�2(1 + �d)
: (38)

We can perform a similar analysis under the assumption that the
noise structure is not known at the fusion center. In this case, a decision
between the two hypotheses is made by comparing the empirical mean

T
(n)
2 (Un) =

1

n
(m1;n �m0;n)

T
Un (39)

to a threshold. The asymptotic logarithmic moment generating func-
tion is obtained by applying results on the asymptotic behavior of large
matrices [16]. It is equal to

�(�) = �2�a2m2 + 2�2a2m2
�
2
w + a

2
�
2 1 + �d

1� �d
(40)

where the leading sign is negative under H0 and positive under H1.
The sequence T (1)

2 (U1) ; T
(2)
2 (U2) ; . . . satisfies the large deviation

principle with good rate functions

��(z) =
(z � 2a2m2)2

8a2m2 �2w + a2�2 1+�
1��

(41)

and the best achievable error exponent is

� lim
n!1

1

n
logP (n)

e =
a2m2(1� �d)

2�2w(1� �d) + 2a2�2(1 + �d)
: (42)

Surprisingly, the error exponent is the same whether the correlation
structure of the noise is known at the receiver or not.

C. Detection of Stochastic Signals in Gaussian Noise

In this section, we characterize the asymptotic performance of the
optimal quadratic detector of Section II-B. Again, supposeX0(d) = 0
and X1(d) is a zero-mean Gaussian process with covariance func-
tion �x(c; d) = �2�jd�cj. Assume that V1; . . . ; Vn is an indepen-
dent sequence of random variables with marginal N 0; �2v , and let
W1; . . . ;Wn be an independent sequence of random variables with
marginal N 0; �2w .

Using properties of Toeplitz matrices [16], we gather that under H0

the asymptotic logarithmic moment generating function is given by
(43) shown at the bottom of the page and, under H1, by

�1(�) = �
1

4�

2�

0

log 1�
2�a2�2 1��

1�2� cos!+�

(a2�2v + �2w)
d!: (44)

While Theorem 1 may be used to gain insight about the form of the rate
function for quadratic functionals of stationary centered Gaussian pro-
cesses [17], the Gärtner–Ellis theorem is not suitable to derive a large
deviation principle in such cases. The asymptotic logarithmic moment

�0(�) = �
1

4�

2�

0

log 1�
2�a2�2 1��

1�2� cos!+�

�2w + a2�2v + a2�2 1��
1�2� cos!+�

d! (43)
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generating functions associated with quadratic functionals do not typ-
ically fulfill the requirements of Assumption 1. Nevertheless, analo-
gous large-deviation results can be obtained by alternate means [18],
[19]. In particular, results from Bercu et al. [19, Section 4.1] can be
transposed to the form of the current setting to obtain a large-devia-
tion characterization of the probabilities of error. As expected, the rate
functions governing the large deviation principle of the error probabil-
ities are given by the Fenchel–Legendre transforms of (43) and (44),
respectively. The error exponent corresponding to the best threshold
can therefore be computed numerically using these Fenchel-Legendre
transforms.

A similar analysis can be carried out for the case where the fusion
center employs a simpler, suboptimal decision rule

T
(n)
4 (U

n
) =

1

n
UT

n
U
n
: (45)

Under hypothesis H0, the corresponding asymptotic moment gener-
ating function is given by

�0(�) = �
1

4�

2�

0

log 1� 2� a2�2
v + �2

w d!

= �
1

2
log 1� 2� a2�2

v + �2
w (46)

and, under H1, the asymptotic moment generating function becomes

�1(�) = �
1

4�

2�

0

log 1� 2� a2�2
v + �2

w

+a2�2 1� �2d

1� 2�d cos! + �2d
d!: (47)

The results of Bryc and Dembo [18] can be employed to assert that the
large-deviation principles on the error probabilities corresponding to
this simpler case are given by the Fenchel–Legendre transforms of (46)
and (47), respectively. Again, the best threshold value can be computed
numerically using these Fenchel–Legendre transforms. Note that, un-
like in the deterministic signal case, some knowledge about the corre-
lation structure of the observations is needed to pick the best decision
threshold.

IV. SENSOR DENSITY ANALYSIS

Wireless sensor systems are typically subject to strict power con-
straints, and sensor nodes are often forced to operate on tiny energy
budgets [20], [21]. It is therefore imperative to understand the interplay
between system performance and resource allocation in such sensor
systems. While it is clear that adding sensors to an existing network
can only lower the probability of error at the fusion center, the question
of how dense a sensor network should be is more difficult to answer.
In other words, will a system with a few powerful nodes outperform
a system with a myriad of low-power nodes? This is the question we
seek to answer in this section.

For convenience and tractability, we assume uniform linear arrays of
sensor nodes, i.e., dk = d(k�1) for k = 1; . . . ; n. The corresponding
sensor density is therefore given by

�
1

d
: (48)

To allow a fair comparison between competing designs, we consider
the specific detection problem where the various sensor network can-
didates offer identical coverage D and are subject to total power con-
straint C . More specifically, the expected consumed power summed
across all nodes should not exceed C , while the length of the uniform

linear array of sensors should be equal toD. The number of nodes con-
tained in a particular system can then be computed as a function of node
density, i.e., n = b�Dc; and, accordingly, the expected power per node
is given by

P
C

n
=

C

b�Dc
: (49)

We emphasize that under these conditions the power budget per area is
fixed, forcing a system with more powerful nodes to use fewer sensors.
With this relation in mind, we present below a density analysis for the
two systems introduced in the previous sections.

The behavior of a large system can be characterized by letting the
total power and the area covered by the network go to infinity, with their
ratio kept constant. For any reasonable system, the Bayes probability
of error at the fusion center goes to zero exponentially fast as the total
power C and area D become simultaneously larger. It is then natural
to compare collections of systems based on their exponential rate of
convergence to zero

� lim
C!1

1

C
logP (C)

e : (50)

This type of analysis yields guidelines for the allocation of system re-
sources in wireless sensor systems. For large area and total power, the
asymptotic regime of (50) provides an adequate measure of perfor-
mance; and its maximizing solution, an educated guess on how dense
the network should be.

A. Detection of Deterministic Signals in Gaussian Noise

When the two possible signals are Gaussian random processes with
means�m, the expected power consumed by an analog relay amplifier

a is given by P = a2m2 + a2�2. From our analysis, we know that
the best achievable error exponent at the fusion center for deterministic
signals in Gaussian noise is equal to

� lim
C!1

1

C
logP (C)

e = �
1

a2m2 + a2�2
lim
n!1

1

n
logP (n)

e

=
m2

2(m2 + �2)

�
(1� �d)

�2
w(1� �d) + a2�2(1 + �d)

(51)

where the exponential rate is given by (38) and (42). Again, we empha-
size that the ratio of the area covered by the network and the total power
consumed by the nodes is fixed in this analysis. That is, the area and
the total power increase jointly to infinity with their ratio kept constant.
Note also that node density affects (51) only through the correlation
coefficient �. It is therefore the combined effect of node density and
correlation that affects the overall performance of the system. Tradeoff
curves for various observation signal-to-noise ratios (SNRs) and corre-
lation coefficients appear in Fig. 1.

It is readily seen in Fig. 1 that the error exponent increases with node
density, regardless of the correlation coefficient and SNR. This can be
shown rigorously. Diversity always improves performance, i.e., having
more sensor nodes with each node using less power outperforms having
fewer high-power nodes. The maximum error exponent is achieved in
the limit where the power per node goes to zero and the node density
goes to infinity

� lim
a!0

lim
C!1

1

C
logP (C)

e =
�m2 log �

4�2c� 2�2
w(m2 + �2) log �

: (52)

In the expression above, c denotes the specific value of the power to
area ratio (c = C=D) employed in the analysis.
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Fig. 1. Error exponent corresponding to wireless sensor nodes with analog
transmission mapping 
 (Y ) = aY , radiated power a (m +� ), correlation
coefficient � 2 f0; 0:4; 0:8g, and power to area ratio c = C=D = 1.

The fact that performance always improves with node density is in-
teresting, since although correlation and observation SNR affect overall
performance, they do not change the way the sensor system should be
designed. That is, systems with many low-power nodes will always per-
form well for the detection of deterministic signals in Gaussian noise.

B. Detection of Stochastic Signals in Gaussian Noise

Performance curves can also be obtained for the scenario where
sensor nodes attempt to detect the presence of a stochastic signal in
Gaussian noise. The power consumption of a relay amplifier in this
context is given by

P =P (H0)a
2�2

v + P (H1)(a
2�2 + a2�2

v)

= a2�2
v + P (H1)a

2�2: (53)

Note that the expected consumed power per sensor in this case depends
on the a priori probabilities P (H0) and P (H1). For sensor density �
and power to area ratio c = C=D, the power per node can be computed
as

P =
c

�
= a2�2

v + P (H1)a
2�2: (54)

The corresponding amplification factor a is the non-negative solution
to (54). Also, the distance between adjacent sensor nodes in a linear
array is given by

d =
a2�2

v + P (H1)a
2�2

c
: (55)

In this scenario, our results are obtained through numerical procedures
because the error exponents corresponding to this setting do not admit
closed-form expressions. For specific system parameters, the best
achievable error exponent at the fusion center is given by

lim
C!1

1

C
logP (C)

e

= �
max limn!1

1
n
log�n; limn!1

1
n
log �n

a2�2
v + P (H1)a2�2

(56)

where the arguments of the maximum are given by (43) and (44) when
the optimal detector is used, and by (46) and (47) when a simpler, sub-
optimal detector is employed instead.

Error exponents as functions of sensor density appear in Figs. 2 and
3 for the optimal and simpler detectors, respectively. The figures show

Fig. 2. Error exponent corresponding to wireless sensor nodes with optimal
decision rule, for analog transmission mapping 
 (Y ) = aY , expected radiated
power a (� + P (H )� ), correlation coefficient � 2 f0:2; 0:5; 0:8g, and
power to area ratio c = C=D = 1.

Fig. 3. Error exponent corresponding to wireless sensor nodes with simpler,
suboptimal decision rule, for analog transmission mapping 
 (Y ) = aY ,
expected radiated power a (� + P (H )� ), correlation coefficient
� 2 f0:2;0:5;0:8g, and power to area ratio c = C=D = 1.

rates for various observation signal-to-noise ratios and correlation co-
efficients. Again we emphasize that, as sensor density increases, the
power per node decreases. The tradeoff between the number of obser-
vations and the quality of the information provided by each sensor node
is apparent in Figs. 2 and 3. System performance improves with density
up to a point where additional gains due to a larger number of samples
are offset by the decay in information quality caused by diminishing
power per node. The optimal operating point for a specific system cor-
responds to the maximum of the corresponding error exponent curve.
Taking the argument of this maximization yields the optimal power per
node and sensor density for the associated system.

It is interesting to note that performance improves with sensor den-
sity for the detection of deterministic signals, while a threshold effect
is present for the detection of stochastic signals. This type of behavior
can be explained by the form of the detector employed at the fusion
center. In the case of deterministic signals, a decision is made based on
a weighted sum of the received signals. As such, the mean contribution
of the communication noise is zero and its variance increases propor-
tionally to the number of sensors present in the system. On the other
hand, when a quadratic detector is used, the components of the commu-
nication noise affect the mean of the decision statistics and ultimately
limit the sensor density. This constitutes a fundamental distinction be-
tween the two modes of operation.
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��1n =
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1
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...
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c
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�r 1 + r2 � � � 0
...

...
. . .

...
0 0 � � � 1

+ (�dr � �
2d) e1e

T

1 + e
n
e
T

n

�1

1: (61)

V. CONCLUSION

The study of system performance as a function of sensor density
allows us to explore the natural tradeoff between the total number of
sensor nodes in a constrained system and the quality of the information
provided by each of these nodes. Having more sensor nodes implies re-
ceiving more observations at the fusion center. On the other hand, in-
creasing the amount of resources per node allows each wireless node to
communicate its information to the fusion center more reliably. The op-
timal design of a constrained system therefore consists of a balance be-
tween the total number of nodes and the amount of resources per node.
In this correspondence, we proposed a framework for the analysis of
sensor density based on an asymptotic analysis. This framework offers
guidelines on how dense a specific network should be. In particular,
for a specific area and a total power budget, this framework provides
an educated guess on how many nodes the system should contain, how
much power each node should use, and how far apart adjacent nodes
should be.

When sensor nodes are densely packed in a finite area, their observa-
tions become increasingly correlated. While conditional independence
is a convenient and widely used assumption, it is likely to fail for dense
networks. We showed through two examples how the theory of large
deviations can be used to assess the performance of wireless sensor
systems with correlated observations. In particular, we showed how
the Gärtner-Ellis theorem and similar results in large-deviation theory
can be employed to assess the asymptotic performance of large sys-
tems. For differentiating between known signals in Gaussian noise,
the overall performance was found to improve with sensor density.
Whereas for the detection of a Gaussian signal embedded in Gaussian
noise, a finite sensor density was shown optimal.

The techniques presented in this correspondence can be applied
in a more general setting, where system constraints and complexity
are traded off against diversity and overall performance. This is very
promising since the field of wireless sensor networks is relatively new,
and the topic of efficient system design for dependent observations
remains largely unexplored. Since these networks are envisioned to
contain large numbers of nodes, our hope is that the design guidelines
provided by large-deviation theory will produce good starting points
for the conception and implementation of practical systems.

APPENDIX

RATE FUNCTION

In this section, we show that

lim
n!1

1T��1
n 1

n
=

1� �d

�2
w(1� �d) + a2�2(1 + �d)

: (57)

This equation is instrumental in finding the good rate function that gov-
erns the large deviation principle associated with the probabilities of
error of an optimal detector. Note that the convergence in weak norm
discussed in [16] is not sufficient to establish (57). We therefore turn to
an alternative derivation and we exploit the structure of the covariance
matrix �n. First, we note that the inverse of �n is given by (58) shown
at the top of the page. Using the following substitutions:

r =
1

2�d
1 + �

2d +
a2�2(1� �2d)

�2
w

�

1

2

1

�2d
1 + �2d +

a2�2(1� �2d)

�2
w

2

� 4 (59)

c =
�d

r
(60)

we can rewrite 1T��1
n 1 as shown in (61) at the top of the page. Ap-

plying the inverse formula

(M + xx
h)�1 = M

�1
�

M�1xxhM�1

1 + xhM�1x
(62)

twice, recursively, we obtain

1T��1
n 1 =

1

�2
w

1� �d

(1� �d)2

...
1� �d

T

�

1

c(1� r2)

1 r � � � rn�1

r 1 � � � rn�2

...
...

. . .
...

rn�1 rn�2
� � � 1

1 + o(n): (63)

We can then evaluate the asymptotic value of 1
n
1T��1

n 1 explicitly,
which yields

lim
n!1

1T��1
n 1

n
=

1� �d

�2
w(1� �d) + a2�2(1 + �d)

: (64)

This is precisely the statement of (57), as desired.
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Wireless Link Scheduling With Power Control
and SINR Constraints

Steven A. Borbash, Member, IEEE, and
Anthony Ephremides, Fellow, IEEE

Abstract—The problem of determining a minimal length schedule to sat-
isfy given link demands in a wireless network is considered. Links are al-
lowed to be simultaneously active if no node can simultaneously transmit
and receive, no node can transmit to or receive from more than one node
at a time, and a given signal-to-interference and noise ratio (SINR) is ex-
ceeded at each receiver when transmitters use optimally chosen transmit
powers. We show that a) the general problem is at least as hard as the
MAX-SIR-MATCHING problem, which is easier to describe and b) when
the demands have a superincreasing property the problem is tractable.

Index Terms—Power control, scheduling, signal-to-interference and
noise ratio (SINR) constraints, wireless.

I. INTRODUCTION

Scheduling is an access control method for the wireless medium that
is particularly appealing when energy efficiency or high throughput is
desired, because scheduling avoids the collisions and retransmissions
of contention-based methods of medium access.
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