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A User-Independent Successive Interference
Cancellation Based Coding Scheme for the

Unsourced Random Access Gaussian Channel
Avinash Vem, Krishna R. Narayanan, Jean-Francois Chamberland and Jun Cheng

Abstract—This work introduces a novel coding paradigm for
the unsourced multiple access channel model. The envisioned
framework builds on a select few key components. First, the
transmission period is partitioned into a sequence of sub-blocks,
thereby yielding a slotted structure. Second, messages are split
into two parts. A portion of the data is encoded using spreading
sequences or codewords that are designed to be recovered by
a compressed sensing type decoder. In addition to being an
integral part of the data, the information bits associated with
this first part also determine the parameters of the low-density
parity check code employed during the subsequent stages of
the communication process. The other portion of the message
is encoded using the aforementioned low-density parity check
code. The data embedded in this latter stage is decoded using
a joint message passing algorithm designed for the T -user
binary input real adder channel. Finally, devices repeat their
codeword in multiple sub-blocks, with the transmission pattern
being a deterministic function of message content independent
of the identity of the device. When combined with successive
interference cancellation, the ensuing communication infrastruc-
ture offers significant performance improvement compared to
coding schemes recently published in the literature for unsourced
random access.

Index Terms—Unsourced Multiple Access, Compressive Sens-
ing, Successive Interference Cancellation, T -User Adder Channel,
Forward Error Correction.

I. INTRODUCTION

Recently, Polyanskiy introduced an original and timely
multiple access problem termed the unsourced multiple access
channel (MAC) model [1]. In this setting, a very large number
of devices, Ktot, operate within a wireless network in an
uncoordinated fashion. At any point in time, only a subset
of these devices are active; we denote the cardinality of this
subset by Ka. Every active device wishes to communicate
a B-bit message to a central base station. Furthermore, the
destination is solely interested in recovering the collection of
sent messages without regard for the identity of individual
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sources. This scenario reflects emerging tasks such as dis-
tributed sensing and averaging. The payload B for unsourced
scenarios is envisioned to be small, on the order of a hundred
bits.

The unsourced, uncoordinated nature of the problem and its
relation to large number of users represent a substantial depar-
ture from traditional multiple access channels. Consequently,
this formulation engenders research questions in terms of
fundamental limits and pragmatic designs with low-complexity
coding schemes. For asymptotically long blocklengths, Chen,
Chen and Guo studied this situation under the name of many-
access channel and derived the capacity in [2]. However, our
interest here is in short blocklengths. In this regime, Shannon
rates and asymptotic information-theoretic limits only offer
partial insight into the structure of the problem. Dispersion
bounds and finite blocklength analysis are much more mean-
ingful in this context, providing achievability benchmarks. In
their initial treatment of the problem [1], Polyanskiy derives
bounds on the performance of finite-length codes for this
problem setting. These bounds serve as guidelines for practical
communication schemes.

The development of efficient coding schemes tailored to the
unsourced, uncoordinated MAC appears to be a challenging
task. Most well-known, low-complexity coding solutions for
the traditional MAC channel, such as code-division multiple
access, rate-splitting [3], and interleave-division multiple ac-
cess [4], implicitly assume some level of coordination and
awareness across devices. For instance, parameters of an ac-
cess scheme, like spreading sequences, code rates, time sharing
schedules, and the Tanner graph of a code, are often device
specific. That is, classic schemes explicitly or implicitly rely
on the identity of the device being known to the destination.
When message lengths are small, collecting and maintaining
the information needed for such coordinated schemes become
inefficient. This renders existing coding solutions for the
traditional MAC inadequate for the unsourced MAC and,
therefore, new paradigms are needed.

In their work [5], Ordentlich and Polyanskiy present the
first low-complexity coding paradigm for the unsourced MAC.
Within their proposed scheme, a transmission period is parti-
tioned into smaller sub-blocks and devices randomly pick one
sub-block to transmit their message. The encoding structure
employed by each device is a concatenated code where the
inner code is designed to recover the modulo-p sum of
codewords transmitted by devices, and the outer code aims at
decoding multiple messages given the modulo-p sum of their
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codewords. Succinctly, the inner code operates in the spirit of
integer-forcing [6], whereas the outer code is an optimal code
for the T -user modulo-p multiple access channel [7]. Under
this construction, an underlying goal is to ensure that almost
all sub-blocks contain at most T distinct signals.

While the contribution of Ordentlich and Polyanskiy is an
important step in finding practical schemes for the unsourced
MAC, there remains a substantial gap between the perfor-
mance of their proposed scheme and the achievability limits
derived in [1]. Indeed, they point to this gap and discuss
avenues for improving performance. In [5, Section III.A],
they discuss the possibility of improving their scheme by
decoding the T messages using the real sum from the channel
output, instead of first reducing the output of the channel
to modulo-p operations. Still, in an unsourced MAC, every
device is forced to employ the same codebook. In view of
this difficulty, they remark that “the task of designing low
complexity capacity approaching same-codebook schemes for
the real binary adder seems quite challenging.” Another sig-
nificant limitation associated with their scheme, which is not
mentioned in [5], stems from the fact that their approach is not
amenable to interference cancellation. Thus, when more than
T devices transmit in a same sub-block (slot), the collected
information cannot be recovered and the sub-block content
must be discarded altogether. As a result, their scheme must
rely on a large number of sub-blocks to ensure that every
device is received in a sub-block that contains at most T
messages. This yields poor spectral efficiency.

This article proposes a novel pragmatic architecture for
the unsourced, uncoordinated MAC channel. Our envisioned
scheme uses compressive sensing, it leverages message bits
to inform each device’s action with respect to channel ac-
cess, and it enables successive interference cancellation. The
ensuing paradigm substantially improves performance when
compared to the state-of-the-art. We elaborate briefly on key
features below, with an emphasis on components that allow
us to circumvent some of the challenges present in [5]. (i)
Active devices employ a same coding scheme; transmitted
signals are determined solely by message bits and they are
impervious to the identity of the device. More specifically,
the message bits dictate parameters of the encoding process
such as the interleaver and the spreading sequence. (ii) The
proposed coding scheme is tailored to the binary-input, real-
adder channel. The information message is split into two parts.
The first portion governs the interleaver for an LDPC code,
and the second part is encoded using this LDPC code. Bits
associated with the first portion are communicated using a
compressive sensing scheme. The second part is recovered
using a message passing decoder that jointly recovers up to T
messages within a sub-block. (iii) Active devices repeat their
codewords in several sub-blocks, and the repetition patterns are
set based on early message bits. This facilitates the application
of successive interference cancellation across sub-blocks and,
therefore, renders obsolete the over-provisioning of sub-blocks
aimed at avoiding collisions with more than T messages per
sub-block. With these contributions in mind, we proceed to
formally describing our framework and its performance.

II. SYSTEM MODEL

Let Ktot and Ka denote the total device count in the
network and the number of active devices, respectively. In this
system, each active device must send B bits of information
within N uses of the channel. An alternate, insightful view-
point that is especially relevant for the problem at hand is
to order the M = 2B possible messages, and then think of
the decoding task as the base station having to identify the
collection of message indices present within a round. Under
this alternate representation, we define wi ∈ [1 :M ] as a ran-
dom variable that denotes the message index of the ith active
device. Throughout, we use [a : b] as a shorthand notation for
the set of integers from a to b, including both endpoints. We
assume that wi is uniformly distributed over the set [1 : M ].
Moreover, we postulate that the elements of {wi} form a
collection of independent random variables. We denote the
set of transmitted message indices by W = {w1, . . . , wKa

}.
Since the action of every active device is completely de-

termined by the content of its message, we can represent
the transmitted signal as ~X(w), where w ∈ [1 : M ]. In
our exposition, we assume that ~X has dimension N , with
symbol entries corresponding to the N uses of the channel.
The observed signal vector at the destination can therefore be
expressed as

~Y =
∑

i is active

~X(wi) + ~Z. (1)

The transmission is subject to additive Gaussian noise, charac-
terized by ~Z ∼ N (0, IN ). For mathematical convenience, we
introduce a notation for canonical boolean indicator functions
{si}, where si = 1 whenever device i is active and si = 0
otherwise. We impose an average power constraint on the
signal set, 1

M

∑M
w=1 ‖ ~X(w)‖2 ≤ NP . The decoder is tasked

with producing a list of messages L(~Y ) = {ŵ1, . . . , ŵKa
}.

As in [5], system performance is evaluated in terms of the
probability of error,

Pe = max
(s1,...,sKtot )∈{0,1}

Ktot

‖(s1,...,sKtot )‖0=Ka

1

Ka

Ktot∑
i=1

si Pr
(
wi /∈ L(~Y )

)
(2)

where ‖ · ‖0 denotes the Hamming weight. The objective is to
design low-complexity encoding and decoding schemes such
that Pe ≤ ε, where ε is a target error probability.

Before advancing to the presentation of our algorithmic
framework, it is instructive to draw a connection between the
unsourced MAC problem and compressive sensing. Suppose
that we gather all the possible signals as columns of a matrix,
(1) can be transformed into

~Y =

 | | |
~X(1) ~X(2) · · · ~X(M)
| | |


︸ ︷︷ ︸

X

 s1
...

sKtot


︸ ︷︷ ︸

~s

+~Z (3)

where ~s is a Ka-sparse vector. That is, the unsourced MAC
problem is an instance of noisy compressive sensing. Further-
more, one has the freedom to construct sensing matrix X, as
long as it fulfills the average power constraint. This may seem
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encouraging given that much is known about compressive
sensing [8], [9]. Unfortunately, a challenge with this viewpoint
arises from the fact that the dimensionality of the solution
space, 2B , far exceeds the capabilities of modern computing
systems when B is approximately a hundred bits. Thus, we
must turn to more pragmatic approaches.

Finally, a brief discussion of the unsourced nature of the
problem is in order. While most random access protocols
are de-facto unsourced, they use explicit or implicit feedback
and/or handshaking during the contention phase to coordinate
the resources assigned to each user. As a result, at the physical
layer, codes can be designed assuming a certain deterministic
interference profile. In this paper, we assume there is no feed-
back from the base station to allocate resources to the active
users to manage interference. The lack of such coordination
makes the design of the physical layer more challenging.

III. PROPOSED SCHEME

The complexity-reduction framework we adopt in our pro-
posed scheme combines recent advances in massive uncoor-
dinated multiple access systems [10], [11], [12], compressive
sensing [8], [9], and iterative decoding [13], [14], [15], [16].
The approach is based on a divide-and-conquer strategy, which
seeks to reduce the number of interfering messages per sub-
block and the dimensionality of the solution space for the
compressive sensing sub-problems. Leveraging a connection
between successive interference cancellation and message-
passing decoding on bipartite graphs [10], [17], previous
contributions have shown that random access can yield near
optimal performance for uncoordinated systems [18], [19].
While traditional implementations often use shared random-
ness to generate schedules, a key insight of our proposed
scheme is that the messages themselves, containing random
bits, can be employed to create schedules. Given a smaller
number of interfering messages per sub-block, the receiver
can decode messages within lightly loaded sub-blocks, and
employ successive interference cancellation to recover the sent
information across sub-blocks. The overall architecture of the
envisioned system appears in Fig. 1.

A. Encoding Process

The encoding process can be described in a hierarchical
fashion. To begin, the N channel uses are divided into V
sub-blocks (or sub-blocks), each of length Ns = N/V . The
encoding operation at an active device takes place in two steps.
Information w is first encoded into a sub-block codeword ~x(w)
of length Ns. This sub-block codeword is then transformed
into signal ~X(w) by repeating the coded sub-part over mul-
tiple sub-blocks as to create a bipartite graph amenable to
successive interference cancellation; this architecture appears
in Fig. 1. We elaborate on the separate steps below.

1) Sub-Block Scheduler: All devices share an identical
codebook for sub-block encoding. Every encoder thus pro-
duces a sub-block codeword of length Ns. Mathematically, a
device encodes message w into a codeword and subsequently
creates modulated signal ~x(w). Since this process should be
familiar to the reader, we often omit details and refer to ~x(w)
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Fig. 1. This notional diagram depicts the operation of the system. Message
wi is (sub-block) encoded into codeword ~x(wi), and then transmitted over
several sub-blocks. The schedule across sub-blocks is a function of message
content, and the information received at the destination within a sub-block is
the aggregate sum of the codewords sent at that time.

as the transmitted codeword. This simplifies the discussion,
and it should not lead to confusion as context can be employed
to distinguish between a codeword and the corresponding
modulated signal. Each device computes a repetition schedule
g(w) using vector function g : [1 : M ] 7→ {0, 1}V , where
a transmission within sub-block t is indicated by a one at
location t. Codeword ~x(w) is then repeated `w = ‖g(w)‖0
times, with `w sub-blocks being selected from [1 : V ]. As
illustrated in Fig. 1, a Tanner graph G can be employed to
visualize the repetition pattern of the codewords. Variable
nodes correspond to messages and check nodes are associated
with sub-blocks. It is worth emphasizing that the transmission
schedule and the number of repetitions, `wi , are deterministic
functions of the message indices; they do not depend on the
identity of the device. This is crucial because the receiver
does not know the structure of the graph and, as such, it
must be able to infer where to perform successive interference
cancellation in real-time from successfully decoded sub-block
codewords.

Once the connection between interference cancellation and
message passing is revealed [10], the goal of the scheduler is to
construct a graph that is conducive to iterative decoding with
high probability [16]. To do so, we briefly review pertinent
concepts. The degree of a left node is determined by `w.
Choosing w uniformly at random among message indices
induces a distribution on `w through function g(·). We denote
the left degree distribution from the node perspective by
L(ν) =

∑`max

k=1 Lkν
k, where Lk denotes the fraction of the
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device (left) nodes that are connected to k (right) sub-blocks.
Similarly, we represent the left degree distribution from the
edge perspective by λ(ν) =

∑`max

k=1 λkν
k−1, where λk is

the fraction of edges in G that are connected on the left
to k − 1 other edges. The two distributions L(ν) and λ(ν)

are linked by the equation λ(ν) = L′(ν)
L′(1) . The ensuing task

is to choose mapping g(·) such that a desired left degree
distribution, L(ν), or equivalently λ(ν), is obtained. Luckily,
much is known about generating good graphs [16]. We will
revisit the notions introduced above and leverage established
properties of random graphs when we build schedules for
performance evaluation.

For a fixed sub-block scheduler, the collection of devices
that transmit during sub-block j is determined by the messages
they wish to communicate. We use Nj to represent the
collection of devices that transmit during sub-block j. Then,
the signal received at the destination at that time becomes

~yj =
∑
i∈Nj

~x(wi) + ~zj , (4)

where ~yj corresponds the segment of ~Y send within sub-
block j and, similarly, ~zj is the part of ~Z matching sub-block j.
Having established the slotted frame structure, we are ready
to explore the specifics of sub-block encoding.

2) Sub-Block Encoding: The proposed transmission scheme
for sub-blocks is composed of two parts: a sensing matrix
for a T -sparse robust compressive sensing problem, and a
channel code for the T -user binary-input real-adder channel.
That is, the first few bits of every message are apportioned
to a compressive sensing problem akin to (3), albeit with a
smaller solution space. The residual bits from all the messages
are recovered using an LDPC code. More specifically, the B
information bits contained within a message are divided into
two groups, one sequence of size Bp, which we call preamble
bits, and another sequence of Bc = B−Bp bits referred to as
coded bits. Let ~b(w) ∈ {0, 1}B be the binary representation of
message w. Then, we can write~b(w) =

(
~bp(w),~bc(w)

)
, where

~bp(w) and ~bc(w) denote the preamble and message bits within
~b(w), respectively. Likewise, let wp be the index representation
of ~bp(w); and wc, that of the remaining bits ~bc(w). For
convenience, we introduce related quantities Mp = 2Bp and
Mc = 2Bc . The essence of sub-block encoding is to transmit
the Bp preamble bits via compressive sensing, and to employ
a forward error correction code to transfer the trailing Bc

message bits. For practical reasons which will soon become
clear, we also use the preamble bits as side information to
control the implementation of the linear code. Typically, one
would want Bp � Bc.

The modulated sub-block signal ~x(w) is formed as follows.
For the preamble, let A ∈ {±

√
Pp}Np×Mp denote a com-

pressive sensing matrix that can support the recovery of any
T columns from an aggregate observation vector with high
probability. The initial Bp symbols in ~x(w) are obtained by
taking the transpose of the wpth column of A, which we
denote by ~awp . Constructing the second part of ~x(w) is more
involved. We begin with a good linear block code such as a
low density parity check (LDPC) code or a spatially-coupled

low density parity check (SCLDPC) code of rate Bc

Ns−Np
and

length Nc = Ns − Np. As an example, we consider the
case where codebook C is chosen uniformly at random from
an SCLDPC ensemble [20]. Let the modulated codewords
associated with C be denoted by {~c(1), . . . ,~c(Mc)}, where
~c(wc) = (c1(wc), . . . , cNc

(wc)) ∈ {±
√
Pc}Nc . Every code-

word then satisfies power constraint

‖~c(wc)‖22 ≤ NcPc. (5)

We employ the preamble index wp to permute the ordering of
~c(wc). Let τ : [1 : Mp] 7→ [1 : Nc!] denote a hash function
that maps these Bp preamble bits into [1 : Nc!], an integer
labeling of all possible Nc-permutations. Function τ(wp) can
be used to choose a permutation πτ(wp) ∈ SNc

, which is
applied to codeword ~c(wc) ∈ C before it is modulated. Above,
SNc designates the symmetric group [21]. Thus, the trailing
part of ~x(w) can be expressed as πτ(wp) (~c(wc)). Appending
the modulated version of the permuted codeword to the coded
preamble yields

~x(w) =
(
~aTwp

, πτ(wp) (~c(wc))
)
. (6)

The codeword creation process is admittedly somewhat intri-
cate and, as such, we summarize key features in Fig. 2.

~aTwp
πτ(wp) (~c(wc))

Np Nc

~x(w)

~bp(w) ~bc(w)~b(w)

Bp Bc

w

wpA

Encoder

Permutation

wc

~c(wc)

τ(wp) Sub-B
lock

C
odew

ord

C
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pr
es

si
ve

Se
ns

in
g

Fig. 2. For message w and corresponding bit sequence ~b(w) =(
~bp(w),~bc(w)

)
, a device creates sub-block signal ~x(w) using the schematic

displayed above.

The purpose of permuting codewords is to decorrelate
the multiple access interference from other devices even
though they use an identical linear code. The reordering
results in a performance that is similar to that observed
when adopting different codes across devices, yet it simplifies
encoding/decoding hardware significantly. This is similar to
interleave-division multiple access scheme originally proposed
in [4]. We note that the overall code is no longer linear
because ~aTwp

is prepended to the beginning of ~x(w) and ~c(w)
is reordered. Still, once ~aTwp

is recovered (along with wp)
and removed from ~x(w), we can reverse the effects of the
permutation on ~c(wc). As we will see shortly, decoding can
then be accomplished using a belief propagation decoder that
works on the joint graph of all the received signals.

The use of compressed sensing in conjunction with a coding
scheme also appears in the work of Chen, Chen and Guo in [2]
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where compressed sensing is used to identify users and then a
random codebook is used to convey the information. However,
unlike in [2], our approach is completely unsourced and the
user is not identified, rather the compressed sensing part is
used to identify interleavers. As a result, in [2], the compressed
sensing part is considered as a capacity penalty. In our case,
it is not a capacity penalty - rather information is conveyed
using the compressed sensing part too. Secondly, in [2], the
compressed sensing part is used only once whereas in our case,
each sub-block requires a compressed sensing part. Finally,
in [2], information-theoretic bounds are derived assuming
random coding whereas our work focuses on practical coding
schemes.

The proposed scheme also bears some similarity to the
scheme in [22] where a T -user multiple access code is used in
conjunction with successive interference cancellation for user
identification. The schemes in [22], [23], [24] use an outer
code and physical layer network coding to decode modulo-
sums of the transmitted codewords in order to implement the
T -user multiple access code. However, in our paper, we do
not decode the modulo sum, rather, the T -user multiple access
code is implemented directly using LDPC codes.

Schemes that combine random access and compressive
sensing for 5G wireless have been proposed in [25] and nice
survey is presented in [26]. A scheme that uses compressive
sensing for multiple access in sensor networks is presented
in [27]. Our proposed scheme is substantially different from
these schemes. Unlike [25], [26], [27], our approach uses
compressed sensing only to convey the parameters of the
LDPC code.

B. Decoding Process
The message recovery process can be distilled into two

key operations: the recovery of codewords within a sub-block,
and successive interference cancellation across sub-blocks. To
carry out this process, the destination seeks to start decoding
with sub-blocks that are lightly loaded. Let Rj = |Nj | denote
the number of codewords transmitted during sub-block j.
Based on its overall observations, the decoder can estimates
Rj for j ∈ [1 : V ]. A simple estimator can be obtained based
on the received signal energy measured within a sub-block,

R̂j = round

(
‖~yj‖2 −Nsσ

2

NcPc +NpPp

)
where σ2 is the noise variance, which is normalized to one
throughout this article. This then yields an ordering for the
early processing of sub-blocks, from lightly loaded to heavily
loaded. We note that more sophisticated estimates based on
decoding can be obtained, if necessary. Yet, empirical evi-
dence suggests that the rudimentary energy estimator described
above suffices for the task at hand.

Within a sub-block, the recovery process relies on a com-
pressive sensing algorithm and a decoder for the T -user
Gaussian multiple access (GMAC) channel. Once a message is
acquired, interference cancellation is straightforward because
the transmission schedule associated with a codeword is a
deterministic function of its information bits. We will make
this last statement precise shortly.

1) Compressive Sensing Decoder: As shown in (4), the
received signal corresponding to a sub-block is equal to the
sum of its sub-block codewords plus noise. Since the head of
every sub-block codeword is a coded version of the preamble,
the first Np received symbols within sub-block j can be written
as

~yj [1 : Np] =
∑
i∈Nj

~aTwp,i
+ ~zj [1 : Np]. (7)

This expression is equivalent to the canonical compressive
sensing matrix equation,

~yj [1 : Np]
T = A~v + ~zj [1 : Np]

T (8)

where ~v ∈ {0, 1}Mp is a Rj-sparse vector that indicates the
set of transmitted messages during sub-block j. We examine
two approaches to recovering ~v from ~yj [1 : Np]. The first
option is a simple correlation decoder, which is amenable to
analysis. The second option exploits the sparsity of ~v and the
fact that the non-zero entries of ~v are non-negative integers.
The latter aspect makes this proposed receiver different from
most standard compressed sensing reconstruction schemes. For
sub-block ji, we define the set of preamble message indices
to be Pj = {wp,i; i ∈ Nj}.
• Correlation Decoder: The preamble recovery process

consists of computing the correlation between the re-
ceived vector and the columns of the sensing matrix. The
R̂j entries with the largest positive correlation values are
declared the elements of P̂j .

• CS List Decoder: Under this option, we first run a non-
negative least squares or a non-negative, `1-regularized
LASSO algorithm that provides an estimate ;

v of ~v. Yet,
these algorithms do not guarantee an output vector of the
required sparsity or with elements contained in {0, 1}.
To address this issue, we perform a hard thresholding
operation on every element of ;

v and we form a list of
non-negative preamble indices Plist = {k : ṽk > η}.
The value of parameter η is chosen such that the list size
remains larger than T . We then implement a maximum
likelihood decoder within the above list of indices to
find the collection of T indices that best explain received
vector ~yj [1 : Np],

P̂j = arg min
P⊆Plist

|P|≤T

∥∥~yj [1 : Np]
T −

∑
k∈P A~ek

∥∥2
2

(9)

where {~ek} are the elements of the canonical basis for
RMp .

We emphasize that the size of Plist grows as we decrease the
value of threshold η, which in turn increases the complexity
of the maximum likelihood estimator in (9). Conversely, if
we raise the value of η, the list size decreases, complexity is
reduced, and performance worsens. Thus, for a given SNR,
the value of η should be optimized.

In both cases, the output of the compressive sensing al-
gorithm for sub-block j is a set of preamble indices, P̂j ,
where |P̂j | ≤ T . This collection of preamble sequences is
communicated to the message-passing GMAC decoder. The
residual error can be employed to assess the likelihood of a CS
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decoding failure or a preamble collision. For instance, suppose
two messages share a same preamble. In the absence of noise,
even with the exact list P = set(Pj), we have∥∥A~v −∑k∈P A~ek

∥∥2
2
= NpPp

because elements cannot be duplicated in P . When noise is
present, the residual error∥∥∥~yj [1 : Np]

T −
∑
k∈P̂j A~ek

∥∥∥2
2

(10)

becomes random. Nevertheless, its statistical properties can
be employed to predict whether a preamble collision has
occurred or not. This statistic can also be utilized to inform
the successive interference cancellation step, starting with sub-
blocks where the residual error is small whenever possible.

2) Message Passing for Gaussian MAC: We describe the
structure of the joint decoding algorithm for the case where
T = 2, yet this process can be generalized to larger values of T
in a straightforward manner. Consider a generic sub-block with
only two devices transmitting. For ease of exposition, suppose
user 1 sends message w1 with representative sub-indices wp,1

and wc,1. Likewise, assume user 2 transmits message w2 with
sub-indices wp,2 and wc,2. Owing to our two-step encoding
process, we assume that preamble sub-indices {wp,1, wp,2}
have already been recovered faithfully, and they are therefore
available to the message passing decoder. After demodulation,
the received signal pertaining to the (SC)LDPC codewords is
given by

~yj [Np + 1 : Ns] = πτ(wp,1) (~c(wc,1)) + πτ(wp,2) (~c(wc,2))

+ ~zj [Np + 1 : Ns].
(11)

The sequence of symbols ~yj [Np+1 : Ns] serves as input to the
joint belief propagation (BP) decoder. As we can observe in
(11), the coded symbols are subject to different permutations,
each determined by preamble bits wc,i. Thence, within the
joint BP decoder, the effects of these permutations must be
accounted for whenever messages are being sent to and from
the MAC nodes. A schematic of the joint Tanner graph for the
two-message case appears in Fig. 3.

Given received signal ~yj [Np+1 : Ns], the joint BP decoder
proceeds iteratively in a manner akin to a single-user AWGN
channel decoder, aside from the extra step whereby messages
are sent to and received from the MAC nodes in each iteration.
Throughout this section, we use superscript to distinguish
between messages 1 and 2. We also abuse notation slightly in
that we reuse bound variables i and j to explain the decoding
process, departing from their use hitherto. Context should
prevent confusion, as the steps and notation are somewhat
standard in treatments of iterative decoding.
• u1i,MAC, u1i,j : Messages passed from the bit node corre-

sponding to ith code bit of user 1 to the corresponding
MAC node and SCLDPC check node j, respectively.

• v1j,i: Message passed from SCLDPC check node j of
user 1 to the bit node i of user 1.

• v1MAC,i: Message passed from ith MAC node to the
connected bit node of user 1.

LDPC Decoder

πτ(wp,2)(·) ↓ π−1
τ(wp,2)

(·) ↑

πτ(wp,1)(·) ↑ π−1
τ(wp,1)

(·) ↓

LDPC Decoder

+ + + + + + + + + + + +~y
j
[N

p
+

1
:
N

s
]

~c
(w

c
,1
)

~c
(w

c
,2
)

Fig. 3. This graph depicts the architecture for joint BP decoding. Symbols
corresponding to the coded part of sub-block j are fed to the decoding
algorithm. The effects of the permutations have to be accounted for when
passing messages back and forth, as seen on the diagram. Beyond this
distinction, decoding proceeds as expected.

The messages for user 2 are defined in an analogous manner.
Figure 4 offers a visual synopsis of the message passing
structure.

i

+

1

2

3

u
i,
M

A
C
=

∑ 3 j
=
1
v j
,i

v1,i
v2,i

v3,i

+

i

i

u
2 i,
M

A
C

v
1 M

A
C
,i

yi,ch
i

+

1

2

3

v M
A
C
,i

v1,i
v2,i

u
i,
3
=
v M

A
C
,i

+
∑ 2 j

=
1
v j
,i

Fig. 4. Message passing rules at individual nodes on the joint Tanner graph
of two users. The message passing rules at the check nodes of the SCLDPC
code are identical to the single user channel coding case.

The message passing rules are summarized below.
• Bit node:

u1i,j = v1MAC,i +
∑

j′∈N(i)\j

v1j′,i

u1i,MAC =
∑
j∈N(i)

v1j,i.

• LDPC check node:

v1j,i = 2 tanh−1

∏
i′ 6=i

tanh

(
u1i′,j
2

) .

• MAC node:

v1MAC,i = h(u2i,MAC, yi)

v2i,MAC = h(u1i,MAC, yi)
(12)
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where h(`, y|σ2) = log
(

1+e`e2(y−1)/σ2

e`+e−2(y+1)/σ2

)
.

Function h(`, y|σ2) can be seen as the log-likelihood of
variable x2 when y = x1 + x2 + z, with x1, x2 ∈ {±1},
the log-likelihood ratio of variable x1 is known to be `, and
z ∼ N (0, σ2).

For numerical simulations employing the message passing
rules described above, we employ a collection SCLDPC codes
for two-user GMAC channel. Performance for these codes is
illustrated in Fig. 5.

−0.5 0.5 1.5 2.5 3.5 4.5
10−3

10−2

10−1

100

Es/N0 (dB)

B
lo

ck
E

rr
or

R
at

e

(3, 6), Nc = 8000

(3, 6), Nc = 32000

(3, 6), Nc = 96000

(3, 9), Nc = 7200

(3, 9), Nc = 30240

CShannon(1/2)

CShannon(2/3)

Fig. 5. We simulate the performance of the channel coding component alone
using regular (3, 6) and (3, 9) spatially-coupled LDPC (SC-LDPC) ensembles
for increasing blocklengths for two-user Gaussian MAC channel. The results
demonstrate that it is possible to achieve the capacity of two-user GMAC (and
can be generalized for T -GMAC) using identical codebooks at all the users,
with independent permutations employed at each user similar to the encoding
scheme described.

3) Decoding Process Across Sub-Blocks (SIC): For any
sub-block j with R̂j ≤ T , the aforementioned process takes
place. Upon successful decoding, the compressive sensing
algorithm and the T -user GMAC decoder together output a
set of transmitted messages within the designated sub-block.
The recovered signals {wi : i ∈ Nj} are then inspected and
their interference to other sub-blocks is removed. In particular,
the sub-blocks where codeword wi is repeated can be inferred
through scheduling function g(·). The corresponding codeword
~x(wi) is subtracted, or peeled off, from the received signal ~yj′
for all j′ ∈ g(wi) \ j. For every such sub-block, estimate R̂j′
is updated to account for the subtraction of one interfering
codeword. The above process is repeated until either all the
Ka messages are decoded, or no sub-blocks with fewer than
T codewords remain.

IV. ANALYSIS AND PARAMETER SELECTION

In this section, we look at parameter selection for the
different components of the system, and we analyze how each
one affects overall performance. As discussed in Section II,
let ε denote the maximum per message error probability. That
is, we wish to successfully decode a (1 − ε)-fraction of the
Ka sent messages, on average. We introduce multiple error
events to facilitate the characterization of the per message error

probability, Pe. Most of these events occur at the sub-block
level, and they are described below for sub-block j.
• Ep,j : The event that, in the absence of a preamble colli-

sion, the compressive sensing algorithm fails to recover
the set of preamble messages accurately, P̂j 6= Pj . In
characterizing performance, we will introduce the related
event Ep, which is defined for the worst case Rj = T .

• Ee,j : This event pertains to error with respect to preamble
collisions. Specifically, there are two types of error. A
false positive or type-I error, E(1)e,j , occurs when there are
no preamble collisions and the CS algorithm successfully
recovers the preambles, but the energy test based on (10)
erroneously declares a failure. And, a false negative or
type-II error, E(2)e,j , corresponds to an undetected preamble
collision. Since such events are mutually exclusive, we
have Ee,j = E(1)e,j ∪ E

(2)
e,j .

• Ec,j : The event that the joint MAC channel decoder fails
to recover the remaining messages when the number of
such messages within sub-block j is no greater than T .

• ESIC: The event that the message from an active device is
not recovered by the successive interference cancellation
process.

A decoding error within sub-block j can be expressed as
Ej = Ee,j ∪ Ep,j ∪ Ec,j . Using the total probability theorem,
we derive a bound on the per message error probability, Pe =
Pr(ESIC),

Pe ≤ Pr
(
ESIC |

(⋃
jEj
)c)

+ Pr
(⋃

jEj
)

= Pr
(
ESIC |

⋂
jE

c
j

)
+ Pr

(⋃
jEe,j ∪ Ep,j ∪ Ec,j

)
≤ Pr (ESIC∗) +

∑
j (Pr(Ee,j) + Pr(Ep,j) + Pr(Ec,j))

≤ Pr (ESIC∗) + V (Pr(Ee) + Pr(Ep) + Pr(Ec))
(13)

where ESIC∗ is the event of a user not being recovered
under the SIC decoder assuming that the compressed sensing
decoder, the collision detector, and the channel decoder do not
make any errors. This can be viewed as the error probability of
an idealized successive interference cancellation process where
the content of every sub-block with fewer than T messages is
recovered faithfully, yet the iterative peeling process may fail.
The multiplication factor V on the last line of (13) arises from
applying the union bound across sub-blocks. The next step in
our analysis is to derive bounds and approximations for the
probabilities in (13).

A. Compressive Sensing Decoding

We begin our analysis of performance by establishing a
ceiling on the probability of the compressive sensing algorithm
failing to recover the preambles in the absence of collisions.
This probability depends on system implementation. Recall
the two reconstruction schemes introduced in Section III-B1,
namely the Correlation Decoder and the CS List Decoder. We
explore their performance for two classes of sensing matrices.
• Random Ensemble: The entries of the random sensing

matrix are generated independently using a Rademacher
distribution. That is, for A ∈ RNp×Mp , every entry is
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selected at random from
{
±
√
Pp

}
with equal probabil-

ities.
• Binary Ensemble: A sensing matrix is derived as a subset

of a binary linear code with appropriate scaling and
shifting. For fixed Np and Mp, we let Cbin be a subset
of size Mp, not necessarily a linear sub code, of a binary
linear code with blocklength Np. Then, the columns of
sensing matrix are obtained via

√
Pp(1 − 2c) where

c ∈ Cbin. We define dmin and dmax of the code Cbin
as follows

dmin = min
c1,c2∈Cbin

dH(c1, c2) (14)

dmax = max
c1,c2∈Cbin

dH(c1, c2). (15)

Clearly, dmin and dmax denote the minimum and maxi-
mum Hamming distances between any two binary vectors
in Cbin by dmin and dmax, respectively.

For these two matrix ensembles, the following lemma charac-
terizes the error probability of the correlation decoder.

Lemma 1 (Correlation Decoding). Consider the T -sparse
support recovery problem. The probability of error for the
correlation decoder is given by

Pr(Ep) = 1− (1− (Mp − T ) Pr(Ecorr))T

≤ T (Mp − T ) Pr(Ecorr)
(16)

where Pr(Ecorr) denotes the probability of a correlation error,
which is defined by

〈~yj [1 : Pp],~a
T
k 〉 ≤ 〈~yj [1 : Pp],~a

T
k′〉 (17)

for some k ∈ Pj and k′ /∈ Pj . This probability can be upper
bounded for the matrix ensembles under consideration,

• Random Ensemble:

Pr(Ecorr) ≤ exp

(
− NpPp

2(2 + (2T − 1)Pp)

)
(18)

• Binary Ensemble:

Pr(Ecorr)

≤ exp

(
−Ppdmax(1− T (1− dmin/dmax))

2

2

)
(19)

where the randomness is over the matrix ensemble and the
communication noise.

Proof: Let k ∈ Pj be fixed. The correlation decoder in-
cludes k on its list of preambles P̂j whenever 〈~yj [1 : Pp],~a

T
k 〉

exceeds 〈~yj [1 : Pp],~a
T
k′〉 for all k′ /∈ P . Since there are

(Mp − T ) candidates for k′, the probability that k ∈ P̂j
becomes 1−(Mp−T ) Pr(Ecorr). For the overall process to be
successful, this must occur T times and, hence, the probability
of failure is given by (17). The analysis for event Ecorr and
for the corresponding bounds in (18) and (19) are lengthier;
they are provided in Appendix A.

For the random ensemble, we observe from (16) and (18)
that the error probability for the correlation decoder decays
exponentially in the number of channel uses Np. Still, the

decay rate is very slow with respect to SNR Pp. In fact,
performance converges to a non-zero constant

lim
Pp↑∞

Pr(Ecorr) = exp

(
− Np

2(2T − 1)

)
.

If we consider the binary ensemble, the error probability of the
decoder decays exponentially in both the number of symbols
Np and SNR Pp provided that subset Cbin possesses the
following properties: the gap between the minimum and maxi-
mum Hamming distances, dmax−dmin, is small; the minimum
distance dmin is large. Together, these two conditions imply a
large dmax, which is necessary for a large exponent (see (19)).
Based on the design objectives outlined above, we create a
sensing matrix from the binary ensemble for an example with
parameters Mp = 512 and Np = 63.

Example 2 (Sensing Matrix from Binary Code). Consider a
binary BCH code CBCH with parameters (n, k) = (63, 10) and
size 1024. Let subset Cbin ⊂ CBCH correspond to a partition
where c ∈ Cbin if and only if 1⊕c ∈ CBCH \Cbin; 1⊕c is the
one’s complement of c, and 0 ∈ Cbin. For this decomposition,
the weight and distance parameters of Cbin are computed to be
(wmin, wmax, dmin) = (27, 36, 27) where wmin, wmax are the
minimum and maximum Hamming weights of binary vectors
in Cbin. We build sensing matrix A of dimension Np×Mp =
63×512 by selecting columns of the form ~ak =

√
Pp(1−2ck)

where ck ∈ Cbin. This decomposition enables us to maintain
minimum distance dmin = 27, while reducing the maximum
distance for the subset Cbin to dmax = 36 from 63 of the
original code.

While the performance of LASSO and non-negative least
squares is significantly better than that of the correlation
decoder, their performances are difficult to characterize an-
alytically. This precludes the derivation of meaningful bounds
on the performance of the CS list decoder. Nevertheless,
empirical evidence suggests that sensing matrices designed
based on BCH codes perform very well even with the CS
list decoder. Figure 6 showcases error performance results for
preamble recovery. The code-based matrix construction is that
of Example 2.

B. Errors and Preamble Collisions

We turn to error events that are associated with preamble
collisions, Ee,j . As mentioned at the onset of this section, there
are two types of error, which we analyze separately. As a
preliminary step, we look at the probability that a preamble
collision occurs.

Lemma 3. In any sub-block with T or fewer transmissions,
the probability that at least two messages within a sub-block
share a same preamble is bounded by

Pr(Ecoll) ≤ 1−
T−1∏
i=0

(
1− i

Mp

)
≤ T (T − 1)

2Mp
. (20)

Proof: We consider the event Eccoll,j in which the Rj
messages in sub-block j have unique preamble indices. There
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Fig. 6. This plot compares the performance of the binary and random matrix
ensembles under CS list decoding and correlation decoding. The parameters
used in the figure are Np = 63, Mp = 512, and T ∈ {2, 3}. The sensing
matrix for the binary ensemble is given in Example 2. For the correlation
decoder, the graph reports the performance bounds given in Lemma 1;
whereas for list decoding, results are based on numerical simulations with
a non-negative least squares followed by maximum likelihood as a CS sub-
component.

are a total of Mp possible preamble indices. When they are
equally likely, we get

Pr(Eccoll,j) =
Mp(Mp − 1) · · · (Mp − (Rj − 1))

M
Rj
p

. (21)

This then implies

Pr(Ecoll,j) = 1−
Rj−1∏
i=0

(
1− i

Mp

)
≤ Rj(Rj − 1)

2Mp
, (22)

where the last term is a bound derived from the first-order
Taylor approximation of Pr(Ecoll,j). According to the encod-
ing scheme, every message is randomly assigned to sub-blocks
based on the message index and, hence, the degree distribution
for the occupation of sub-blocks is non-uniform. Still, we
observe that the CS algorithm and the channel decoder are
run on a sub-block only when the remaining number of signals
are less than T . Thus, we can set the number of messages per
sub-block to T to get a uniform upper bound across the sub-
blocks. Substituting Rj with T in (22), we obtain the desired
expression. In the decoding process, only sub-blocks with T
or fewer transmissions are decoded and, hence, it suffices to
consider the probability of two messages picking the same
preamble in sub-blocks with T or fewer transmissions.

Again, error event E(1)e,j takes place when there are no pream-
ble collisions and the CS algorithm recovers the preambles, but
the energy test based on (10) erroneously declares a failure.
The probability of this event is bounded in Lemma 4.

Lemma 4. Suppose that the energy test of (10) utilizes a
threshold of ξ > 0, then

Pr
(
E(1)e,j

)
≤ (ξe1−ξ)

Np
2 .

Proof: If there are no preamble collisions and the com-
pressed sensing decoder successfully recovers the indices, then

Pr
(
E(1)e,j

)
= Pr

(∥∥∥~yj [1 : Np]
T −

∑
k∈Pj A~ek

∥∥∥2
2
> ξ

)
= Pr

(
1

Np

∥∥~zj [1 : Np]
T
∥∥2
2
> ξ

)
≤ (ξe1−ξ)

Np
2

where the last inequality is a Chernoff bound on the tail
probability of a chi-squared distribution.

A false negative, E(2)e,j , arises from an undetected preamble
collision. The probability of such an event is examined below.

Lemma 5. Suppose that the energy test of (10) utilizes a
threshold of ξ > 0, then

Pr
(
E(2)e,j

)
≤ 1−QNp

2

(√
NpPp,

√
Npξ

)
where QM (·, ·) is the Marcum Q-function.

Proof: The hardest preamble collision event to detect is
when exactly two messages share a same preamble. Denote
the duplicate preamble by k′. Then, the repeated entry will
not be accounted for in Pj , and

~yj [1 : Np]
T −

∑
k∈Pj A~ek = ~zj [1 : Np]

T +A~ek′ .

This statistic has noncentral chi-squared distribution, with Np

degrees of freedom and noncentrality parameter ‖A~ek′‖2. For
the two matrix ensembles considered herein, the noncentrality
parameter becomes NpPp. Then, we get

Pr
(
E(2)e,j

)
= Pr

(
1

Np

∥∥~zj [1 : Np]
T +A~ek′

∥∥2
2
≤ ξ
)

≤ 1−QNp
2

(√
NpPp,

√
Npξ

)
where QM (·, ·) is the Marcum Q-function.

After these preliminaries, we are ready to address the
probability of event related to preamble collisions.

Proposition 6. For the energy test of (10) with threshold of
ξ > 0 and the matrix ensembles at hand, the probability of Ee
is bounded by

Pr (Ee) ≤ (ξe1−ξ)
Np
2

+
T (T − 1)

2Mp

(
1−QNp

2

(√
NpPp,

√
Npξ

))
where QM (·, ·) is the Marcum Q-function.

Proof: To establish this result, we condition on Ecoll to
obtain

Pr(Ee) = Pr(Ee|Eccoll) Pr(Eccoll) + Pr(Ee|Ecoll) Pr(Ecoll)
≤ Pr(Ee|Eccoll) + Pr(Ee|Ecoll) Pr(Ecoll)
= Pr

(
E(1)e

)
+ Pr

(
E(2)e

)
Pr (Ecoll) .

The statement of the proposition is obtained by substituting
the above expression from the corresponding upper bounds
in Lemma 4, Lemma 5, and Lemma 3. Parameter ξ can be
selected as to optimize the bound.
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C. Channel Coding Problem

This section focuses on the analysis of the T -GMAC chan-
nel coding problem. Although information theoretic limits for
the multiple access problem and, in particular, the symmetric
rate region are well known, these results offer only limited
insight into coding with short blocklengths. Since we are
applying coding over short sub-blocks, we turn to finite length
performance. In this context, the finite-length random coding
bounds derived by Polyanskiy [1] for the Gaussian multiple
access channel are more revealing. The following lemma is
equivalent to [1, Theorem 1], except that we are interested
in the situation where an error is declared whenever at least
one of the messages fails to appear in the decoded set (see
event Ec,j). This contrasts with [1], where error events and
their probabilities are defined in a manner akin to (2).

Lemma 7. There exists an (Nc,Mc) random-access code
for T -user satisfying the power constraint P , as in (5),
with probability of error under maximum-likelihood decoder
bounded by

P (Ec) ≤ hFBL(Nc,Mc, T, P ) = p0 +

T∑
t=1

min(pt, qt) (23)

where

p0 =

(
T
2

)
Mc

+ T Pr
(∑Nc

j=1 z
2
j >

NcP
P ′

)
pt = exp (−NcE(t))

qt = inf
γ

(Pr(It ≤ γ) + exp (Nc(R1 +R2)− γ))

E(t) = max
0≤ρ,ρ1≤1

(E0(ρ, ρ1)− ρρ1tR1 − ρ1R2)

E0 = ρ1a+
1

2
log(1− 2bρ1)

a =
ρ

2
log (1 + 2P ′tλ) +

1

2
log (1 + 2P ′tµ)

b = ρλ− µ

1 + 2P ′tµ

µ =
ρλ

1 + 2P ′tλ
λ =

P ′t− 1 +
√
D

4(1 + ρ1ρ)P ′t

D = (P ′t− 1)
2
+ 4P ′t

1 + ρρ1
1 + ρ

R1 =
1

Nc
logMc −

1

Nc
log(t!) R2 =

1

Nc
log

(
T

t

)
.

In addition, ~z ∼ N (0, INc
) is white Gaussian noise, and

It = min
|S0|=t
S0⊆[1:T ]

NcCt +
log e

2

(∥∥∑
i∈S0

~ci + ~z
∥∥2
2

1 + P ′t
− ‖~z‖22

)

Ct =
1

2
log (1 + P ′t) .

Proof: In [1], the author considers the T -user GMAC
problem with a power constraint P , akin to (5). To explain
their results, let W be the set of messages of size T , chosen
by the users uniformly without replacement. Also, let Ŵ
be the collection of messages of size T output by the de-

coder. Consider a random Gaussian codebook with distribution
N (0, P ′In), with P ′ < P . The author in [1] shows that

Pr
(∣∣W \ Ŵ ∣∣ = t

)
= min(pt, qt). (24)

They also prove that p0 is the total variation distance of a
random variable of maximum value 1 under the following two
conditions. Messages are sampled independently, rather than
without replacement. And, a codeword is set to 0 whenever
the total power of its candidate random vector exceeds NcP .
These findings, along with the observation that

Pr(Ec) = p0 + 1−
t∏
i=1

(
1− Pr

(
ŵi /∈ Ŵ

))
≤ p0 +

T∑
t=1

Pr
(∣∣S \ Ŝ∣∣ = t

)
,

complete the proof.

D. Successive Interference Cancellation

The channel coding literature on LDPC codes applied to
binary erasure channels, and the literature on sparse signal
recovery via message passing over Tanner graphs are well
developed [16], [10]. In these situations, successive interfer-
ence cancellation is often studied under the peeling decoder
designation. This refers to the iterative process where a right
node (time sub-block) connected to only one left node (mes-
sage) can be decoded and removed from all its connections,
thereby peeling off the node from the bipartite graph. This
concept essentially coincides with the successive interference
cancellation process described in Section II, except that our
peeling process can proceed as long as the number of variable
nodes connected to a sub-block is less than or equal to T
instead of 1. Although density evolution is well studied to
predict the performance of such a decoding process for the
base case, existing density evolution methods are essentially
constrained to the scenario where T = 1. Before we address
this issue, we describe the enhanced peeling process formally.

Definition 8 (Idealized SIC Decoding). An idealized SIC
decoder is a decoder for which all users within a sub-block can
be decoded with zero error whenever the number of residual
undecoded users in the sub-block is less than or equal to T . If
the number of undecoded users within a sub-block exceeds
T , then the corresponding messages cannot be recovered
from this sub-block at this stage. In other words, under this
idealized SIC process, there are no preamble collisions in any
sub-block. Moreover, the channel and sparse signal decoders
are assumed reliable, with zero error. This peeling process
continues iteratively until all the users are decoded or all the
remaining sub-blocks features more than T undecoded users.
We also refer to this as the idealized BP process.

In this section, we address this gap by analyzing the
density evolution for the idealized SIC decoding and deriving
performance thresholds. See [16] for additional information
on the threshold behavior of iterative peeling processes. Here
again, we abuse notation slightly in that we reuse variables
x and y to discuss density evolution. This should not be
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an issue to the reader as this notation is widely used in the
study of message passing, and context should prevent possible
confusion.

Lemma 9 (Density Evolution). Let the left and right degree
distributions of the bipartite graph from the edge perspective
be λ(x) and ρ(x). Also, let xt be the probability that an
edge in the graph, in iteration t of the idealized BP process,
is connected to a left node that is undecoded yet. Then, the
recurrence relation for xt corresponding to the idealized BP
process is given by

yt =

T∑
r=1

ρr +
∑
r>T

ρr

(
T−1∑
t=0

(
r − 1

t

)
(1− xt)r−1−txtt

)

(25)
xt+1 = λ(1− yt). (26)

Proof: For an LDPC code, the bipartite graph corresponds
to the parity check matrix where the left and right nodes repre-
sent the bits of the codeword and the parity check equations,
respectively. If we consider an LDPC code under a binary
erasure channel where each bit is erased with probability ε,
under the assumption that the bipartite graph is a tree, the
probability that a random edge in the graph is an erasure in
iteration t of the peeling process is given by [16]

yt =

rmax∑
r=1

ρr(1− xt)r−1 (27)

xt+1 = ελ(1− yt). (28)

Equation (27) stems from the observation that the incoming
messages at a check node are independent, due to the tree
structure; and, the outgoing message on an edge from a check
node of degree r is a non-erasure if and only if all the incoming
messages are non-erasures. For degree distributions with finite
maximum degrees on the left and right, it is known that a graph
chosen randomly from the ensemble (N,λ, ρ) is a tree with
probability approaching one, asymptotically in the blocklength
of the code.

If we consider edge e connected to a check node of degree
r in the idealized BP process, the outgoing message is a non-
erasure if and only if there are at most T − 1 erasures in the
remaining r − 1 incoming edges. Thus, the probability that
the outgoing message from a check node of degree r forms
a non-erasure, denoted by yt,r, if every incoming message on
the remaining r − 1 edges are erased with probability xt is
equal to

yt,r =

{∑T−1
t=0

(
r−1
t

)
(1− xt)r−1−txtt r > T

1 r ≤ T.

Averaging over all edges, where an edge is connected to a
check node of degree r with probability ρr, yields (25).

Let L(x) =
∑`max

k=1 Lkx
k be the left degree distribution

with which each user chooses their repetition parameter, as
described in Section III-A; that is, Pr(`w = k) = Lk. Also,
let the average left degree of this distribution be `avg =∑`max

k=1 kLk. Then, according to our transmission policy, the

right degree distribution R(x) is binomial with parameters
(Ka`avg, 1/V ). In the limit as Ka → ∞, R(x) converges to
a Poisson distribution with parameter ravg =

Ka`avg
V . Thus,

asymptotically in Ka, we have R(x) = e−ravg(1−x) and
ρ(x) = R′(x)/R′(1) = e−ravg(1−x). For additional details,
we refer the reader to [10], [18].

Corollary 10. For V = αKa, where α is fixed, the asymptotic
performance of our transmission scheme under the idealized
SIC decoding process can be characterized by

lim
Ka→∞

Pr(ESIC(Ka, T )) = L(1− y∞)

where y∞ = limt→∞ yt and Pr(ESIC(Ka, T )) denotes the
probability that the idealized SIC process fails to recover a
message when Ka devices are active. The initial condition
is x0 = 1; variables xt and yt are governed by the density
evolution equations in Lemma 9.

As we infer from (26) and (25), xt = 0 is a fixed point
if and only if λ0 = 0. This leads us to the following result
characterizing the threshold behavior of the system.

Definition 11 (Density Evolution Threshold). For cases where
L1 = 0, we define the density evolution threshold α∗DE by

α∗DE = inf

{
α : lim

Ka→∞
Pr(ESIC(Ka, T )) = 0

}
.

This definition is motivated by similar concepts in the
literature. We validate the threshold behavior via numerical
simulations. For a fixed left degree distribution L(x) = x2,
we first compute the density evolution thresholds according
to Definition 11. This produces α∗DE = 0.5975 and 0.2949
for T ∈ {2, 4}, respectively. We then perform Monte Carlo
simulations wherein a random graph is generated every time,
as described in Section III-A, for increasing values of Ka.
Figure 7 plots performance as functions of the number of sub-
blocks. In both cases, simulations offer supporting empirical
evidence of the threshold behavior. As Ka increases, the
probability of a user not being decoded decreases sharply
for values of α > α∗DE; yet, this probability remains fairly
constant for values of α ≤ α∗DE. As can be observed from
Fig. 7, for finite values of Ka and given a desired upper
bound on Pr(ESIC(Ka, T )), α∗DE serves as a good starting
point in the search for required value of α = V

Ka
. A precise

characterization of error probability, Pr(ESIC(Ka, T )), for
idealized SIC decoder for T > 1, is an interesting future
direction.

V. NUMERICAL RESULTS

In this section, we assess the overall performance of our
proposed framework and we compare it with the performance
of other schemes found in the literature. In [5], Ordentlich and
Polyanskiy propose a low-complexity coding scheme for the
unsourced, uncoordinated Gaussian multiple access channel.
They also contrast their low complexity coding scheme with
slotted ALOHA, treating inference as noise (TIN), and random
coding achievability bounds. To ensure fairness in comparison,
we pick identical parameters in our simulations. That is, we
fix the number of information bits per message to B = 100;
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Fig. 7. In this plot, α∗
DE is the density evolution threshold computed for

L(x) = x2 and T = {2, 4} from Lemma 9. We validate the threshold
behavior by evaluating the performance of the idealized BP process via Monte
Carlo simulations for increasing blocklengths. We observe that the simulations
indeed confirm the threshold behavior for values of α above the DE threshold.

the total number of channel uses is set to N = 30, 000; the
number of active users is Ka ∈ [25 : 300]; and the maximum
per user error probability is Pe ≤ ε = 0.05.

With these common parameters fixed, we turn to the design
parameters that are specific to our proposed scheme. We ex-
plore performance for systems where the maximum number of
messages to be jointly decoded falls within T ∈ {2, 4, 5}. The
left degree distribution is chosen to be L(x) = βx+(1−β)x2
(see Remark 12), and the free parameter is optimized over
β ∈ {0, 0.1, . . . , 1}. The number of preamble bits is Bp = 9,
and the channel code operates over Bc = 91 bits. Sensing
matrix A ∈ R63×512 is as described in Example 2. We briefly
explain the rationale behind our choices for Bp and A in
Remark 13.

The number of channel uses available for channel coding,
Nc, depends on the sub-block size, which in turn is contingent
on the total number of sub-blocks V . It would be impractical to
build a channel code for all rates Bc/Nc (with Bc fixed and Nc

varying), and subsequently evaluate performance numerically
for every pair (Bc, Nc). Consequently, we employ the finite
blocklength achievability bound in (24) as a proxy for the
operation of the channel code while evaluating overall system
performance. For a specific operating point, we also report
findings based on LDPC code constructions and compare with
using finite blocklength achievability bounds. This appears to
be a reasonable strategy.

To meet error probability constraint ε, we leverage (13)
and aim at Pr(ESIC∗) + V (Pr(Ep) + Pr(Ee) + Pr(Ec)) ≤
0.05. We further divide the probability of error as follows:
Pr(Ep),Pr(Ee),Pr(Ec) ≤ 0.01/3V and Pr(ESIC∗) ≤ 0.04.
For a given T , the performance of the overall scheme is
presented as the minimum Eb/N0 required to achieve Pe ≤ ε,
where

Eb
N0

= min
β

(2− β)(NpPp +NcPc)

2B
(29)

Pp = arg min

{
P ′p : max(Pr(Ep),Pr(Ee)) ≤

0.01

3V

}
(30)

Pc = arg min

{
P ′c : hFBL(Nc, Bc, T, P

′
c) ≤

0.01

3V

}
(31)

Ns = bN/V c (32)
V = arg min {V ′ : Pr(ESIC∗(Ka, V

′, T )) ≤ 0.04} . (33)

We compute Eb
N0

in (29) by computing Eqns. (33), (30),
(32), and (31) in that order. A few remarks on how we
compute these quantities are apropos. To evaluate Pr(Ep),
we choose T preamble message indices at random, without
replacement, from the Mp admissible indices and we form the
measurement vector. We then apply the list decoder described
in Section III-B1. The probability of error Pr(Ep) in (30)
is computed from at least 105 Monte Carlo samples. We
use the upper bound for Pr(Ee) given in Proposition 6.
Finally, to evaluate Pr(ESIC∗(Ka, V

′, T )), we rely on Monte
Carlo simulations. For each sample, we generate a bipartite
graph with Ka variable nodes and V ′ sub-block nodes. Edge
connections are as described in Section III-A. We then run
the idealized SIC decoder on this bipartite graph. Empirical
averaging serves as an estimate for the error probability. The
results for the minimum SNR required to achieve the target
error probability are presented in Fig. 8.
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Fig. 8. This shows the minimum Eb/N0 required to achieve Pe ≤ 0.05
as a function of the number of active devices. The ∗ mark represents the
performance of our proposed scheme (T = 2) with a regular LDPC code,
instead of the finite blocklength bounds given in [1]. The proposed framework
significantly outperforms existing low-complexity, uncoordinated schemes for
large systems.

In Fig. 8, the curves labeled T = 2, T = 4, and T = 5
correspond to the performance of our proposed scheme, eval-
uated as described above. The curve labeled 4-fold ALOHA
is the performance of the 4-fold ALOHA scheme from [5]
wherein the traditional slotted-ALOHA scheme is extended to
the case where all the sub-blocks with number of interfering
signals not greater than 4 are assumed to be decoded with finite
achievability performance of 4-GMAC. It can be seen that, for
large values of Ka, our proposed scheme with T ∈ {4, 5}
substantially outperforms 4-fold ALOHA, despite the fact
that the latter scheme necessitates acknowledgement feedback.
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This gain is attributable to the iterative peeling process, which
is absent in 4-fold ALOHA. The curve labeled OP-Exact is a
reproduction of the findings from [5] for the practical scheme
introduced therein. The ∗ mark points to the performance
of our proposed scheme (T = 2), when an LDPC code is
simulated, instead of using the FBL bound as a performance
proxy. Specifically, we employ a rate-1/4 (364, 91) LDPC code
obtained from repeating every coded bit of a (3, 6) LDPC code
twice. Decoding takes place under a joint message passing
decoder. It can be seen that the simulation results for the
(3, 6) LDPC code are only 0.5 dB away from the curve
corresponding to T = 2, which offers supporting evidence to
the approximation based on the FBL sub-block coding bound.
More importantly, the figure shows that our proposed scheme
offers substantial gain over the results in [5].

In the proposed encoding scheme, for L(x) = βx + (1 −
β)x2, each device may transmit once or twice depending on
its message index. We emphasize that the power constraint
employed is averaged over all possible message indices, i.e.,

Ew
[
‖~c(w)‖22

]
= (2− β)P.

For completeness, Fig. 9 presents similar results when the
power constraint is uniform across all codewords, ‖~c(w)‖2 ≤
P for all w. We enforce this stricter constraint, for each
value of SNR Es/N0, by choosing β = 0 (or 1), which
guarantees that every codeword is repeated exactly twice (or
once) irrespective of the underlying message. As seen on
the figure, performance deteriorates only slightly, which is
encouraging.

Remark 12. We remark in Section IV-D that, if the minimum
left degree is one, then zero is not a fixed point for the DE
equations; in other words, in the asymptotic regime, error
floors rather than threshold behavior will dominate. Still, the
effects of a minimum left degree of one for a finite number of
messages regime are not very clear.

Remark 13. We discuss the choice of compressive sensing
parameters Bp, Np & A used in Sec. V.
• We observe from Fig. 6 that under practical decod-

ing schemes the random ensemble performs worse than
the carefully designed BCH-code based sensing matrix.
Therefore, we choose BCH-code based designs for A with
Np = 2m − 1

• At one end of the operating regime, for Ka = 300, α ≈
1.2, and T = 1, Eqn. (32) implies Ns = 83. We note that
Ns = Np +Nc.

• For a fixed Np, we look at the choice of Bp. Increasing
Bp by one bit results in a compressed sensing matrix
with double the number of columns. The non-negative
least squares method compressive sensing decoder has
a complexity of O(M3

p). Thus an increase in Bp by one
bit results in the computational complexity of compressed
sensing decoder octupled. This makes the evaluation of
Eqn. (30) for large sensing matrices, for various values
of V, extremely difficult.

In view of the above constraints and the specific parameters of
interest i.e., N = 30000, ε = 0.05 considered in this paper, a

good balance between error performance and complexity was
obtained by choosing A in Example 2 with size Np ×Mp =
63× 512.

VI. DISCUSSION

This article presents a new low-complexity framework
for the unsourced, uncoordinated MAC channel. This novel
framework employs the fact that the randomness contained
in prospective messages can be leveraged to informed random
access. It creates a scheme where transmissions are device ag-
nostic, relying solely on content to create signals. Furthermore,
it takes advantage of compressive sensing and joint decoding
to enable successive interference cancellation. The resulting
scheme outperforms other existing low-complexity schemes
found in the literature.

Conceptually, the article emphasizes the connection between
compressive sensing and the unsourced MAC. The proposed
framework also invites new paradigms that connect sparse
recovery with modern coding theory. In particular, it suggests
new means to encode sparse signals for subsequent approx-
imate reconstruction when signal spaces are vast. Possible
avenues of future research include the implementation of
this framework with other sub-block coding schemes, and
an exploration of potential application domains beyond the
unsourced MAC problem.

In this paper, we restricted our attention to an idealized
channel model which assumes perfect symbol-level synchro-
nization and no fading. With appropriate modifications such as
in [28], the compressed sensing part can be made to work even
in the presence of asynchronism and fading with no CSIR.
Hence, in principle, the proposed scheme can be extended to
handle more practical scenarios; however, an evaluation of the
scheme under such a practical scenario is left for future work.
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Fig. 9. This plot depicts the minimum Eb/N0 required to achieve Pe ≤
0.05 as a function of the number of active devices. The curves compare the
performance obtained under an average power constraint with that of a system
where the power requirement is imposed on every possible transmit signal.
The latter requirement is achieved by making sure that the number of times a
sub-block codeword is repeated remains constant across messages. We observe
that the performance for these two cases remain close.
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APPENDIX A
PROOF OF LEMMA 1

This section contains a proof of Lemma 1. We need to show
that, for a random random ensemble,

Pr(Ecorr) ≤ exp

(
− NpPp

2(2 + (2T − 1)Pp)

)
and, for a binary ensemble,

Pr(Ecorr) ≤ exp

(
−Ppdmax

2

(
1− T

(
1− dmin

dmax

))2
)
.

To simplify the exposition, we drop sub-block index j through-
out. We also use the shorthand notation ~yp = ~y[1 : Pp]

T and
~zp = ~x[1 : Pp]

T Suppose k ∈ P and k′ /∈ P are fixed. Then,
the error event of (17) can be rewritten as

0 ≥ 〈~yp,~ak − ~ak′〉
= 〈~zp,~ak − ~ak′〉+NpPp − 〈~ak,~ak′〉
+
〈∑

κ∈P\k~aκ,~ak − ~ak′
〉
.

(34)

Equivalently, this event can be expressed as

〈~zp,~ak′ − ~ak〉+
∑
κ∈P\k

〈
~aκ,~ak′ − ~ak

〉
+ 〈~ak,~ak′〉

≥ NpPp.
(35)

Then, the probability of an error can be computed as

Pr(Ecorr)

= Pr

(
1

NpPp

(
〈~zp,~ak′ − ~ak〉+

〈∑
κ∈P~aκ,~ak′

〉
−
〈∑

κ∈P\k~aκ,~ak
〉)
≥ 1

)
.

(36)

Moving forward, we examine the two matrix ensembles sep-
arately.

Random Ensemble: For Rademacher random ensemble, we
note that

E
[
〈~zp,~ak′ − ~ak〉+

∑
κ∈P\k

〈
~aκ,~ak′ − ~ak

〉
+ 〈~ak,~ak′〉

]
= 0.

Moreover, we have

E
[(
〈~zp,~ak′ − ~ak〉+

∑
κ∈P\k

〈
~aκ,~ak′ − ~ak

〉
+ 〈~ak,~ak′〉

)2]
= E

[
(〈~zp,~ak′ − ~ak〉)2

]
+ E

[(∑
κ∈P\k

〈
~aκ,~ak′ − ~ak

〉)2]
+ E

[
(〈~ak,~ak′〉)2

]
+ 2E [〈~zp,~ak′ − ~ak〉〈~ak,~ak′〉]

+ 2E
[
〈~zp,~ak′ − ~ak〉

(∑
κ∈P\k

〈
~aκ,~ak′ − ~ak

〉)]
+ 2E

[(∑
κ∈P\k

〈
~aκ,~ak′ − ~ak

〉)
〈~ak,~ak′〉

]
= 2NpPp + 2(T − 1)NpP

2
p +NpP

2
p

= 2NpPp + (2T − 1)NpP
2
p .
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We emphasize that the expectations of the cross-terms are
zero. The probability of error can then be bounded using the
Chebyshev inequality,

Pr(Ecorr) ≤
(2T + 1)NpP

2
p

N2
pP

2
p

=
2 + (2T − 1)Pp

NpPp
. (37)

For large values of Np, the random empirical averages
1

NpPp

〈∑
κ∈P~aκ,~ak′

〉
and 1

NpPp

〈∑
κ∈P\k~aκ,~ak

〉
are indepen-

dent, and their respective distributions are well approximated
by N

(
0, TNp

)
and N

(
0, T−1Np

)
. Likewise, the distribution of

1
NpPp

〈~zp,~ak′ − ~ak〉 is well approximated by N
(
0, 2

NpPp

)
.

This follows from the law of total variance and a central limit
argument. Applying properties of Gaussian random variables,
we get

Pr(Ecorr) ≤ exp

(
− NpPp

2(2 + (2T − 1)Pp)

)
.

Binary Ensemble: For this second ensemble, the correlation
between any two vectors is bounded by

Np − 2dmax ≤
1

Pp
〈~ak,~ak′〉 ≤ Np − 2dmin.

Accordingly, we can write

Pr(Ecorr)

= Pr
(
〈~zp,~ak′ − ~ak〉+

〈∑
κ∈P~aκ,~ak′

〉
−
〈∑

κ∈P\k~aκ,~ak
〉
≥ NpPp

)
≤ Pr

(
〈~zp,~ak′ − ~ak〉+ PpT (Np − 2dmin)

− Pp(T − 1)(Np − 2dmax) ≥ NpPp

)
= Pr (〈~zp,~ak′ − ~ak〉 ≥ 2Pp(dmax − T (dmax − dmin)) .

The variance of 〈~zp,~ak′−~ak〉 is equal to PpE
[
‖~ak′ − ~ak‖22

]
≤

4Ppdmax. Again, using properties of the Gaussian distribution,
we obtain

Pr(Ecorr) ≤ exp

(
−Pp(dmax − T (dmax − dmin))

2

2dmax

)
.
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