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Abstract—This article focuses on the design and evaluation
of pragmatic schemes for delay-sensitive communication. Specif-
ically, this contribution studies the operation of data links that
employ incremental redundancy as a means to shield information
bits from the degradation associated with unreliable channels.
While this inquiry puts forth a general methodology, exposition
centers around erasure channels because they are well suited
for analysis. Nevertheless, the goal is to identify both structural
properties and design guidelines that are broadly applicable.
Conceptually, this work leverages a methodology, termed sequen-
tial differential optimization, aimed at identifying near-optimal
block sizes for hybrid ARQ. This technique is applied to erasure
channels and it is extended to scenarios where throughput is
maximized subject to a constraint on the feedback rate. The
analysis shows that the impact of the coding strategy adopted and
the propensity of the channel to erase symbols naturally decouple
when maximizing throughput. Ultimately, block size selection
is informed by approximate distributions on the probability of
decoding success at every stage of the incremental transmission
process. This novel perspective, which rigorously bridges hybrid
ARQ and coding, offers a computationally efficient framework to
select code rates and blocklengths for incremental redundancy.
Findings are supported through numerical results.

I. INTRODUCTION

As the reach of the Internet stretches beyond traditional
applications to integrate sensing, actuation, and cyber-physical
systems, there is a need to better understand delay-sensitive
communication over unreliable channels. The rising popularity
of interactive communications, live gaming over mobile de-
vices, and augmented reality contributes to a growing interest
in low-latency connections. These circumstances have been
a key motivating factor underlying several recent inquiries
pertaining to information transfers under stringent delay con-
straints. Such contributions include the divergence framework
for short blocklengths [1], [2], the interplay between coding
and queueing [3], and ongoing work on the age of informa-
tion [4], [5].
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Hybrid automatic repeat request (ARQ) has been identified
as a central approach to deliver information in a timely manner
over unreliable channels [6]. It can be designed to adapt
gracefully to channel degradations associated with fading and
interference, and it has found wide application in theory and
practice [7], [8]. Conceptually, hybrid ARQ is a means to
leverage limited feedback between a source and its destination
to ensure the timely delivery of information, especially in short
blocklength regimes. Researchers have developed techniques
to analyze the benefits of communication systems with hybrid
ARQ [9], [10]. Yet, until recently, brute force searches, simula-
tion studies, and ad hoc schemes remained the primary means
of parameter selection in terms of blocklengths and code rate
for such systems [11]. This situation changed when Vakilinia
et al. introduced a novel approach for parameter selection [12],
[13]. Their proposed methodology captures the effects of
the physical channel on code performance by defining an
approximate empirical distribution on the probability that a
rate compatible code decodes successfully at each of its
available rates. Based on the ensuing distribution, the authors
then put forth a numerically efficient, sequential differential
optimization (SDO) algorithm that yields best operational
parameters for hybrid ARQ.

In [14], SDO is applied to erasure channels where the
objective is to maximize throughput subject to a limit on
the number of hybrid ARQ sub-blocks. Extending this recent
contribution, the present article offers a novel geometric in-
terpretation for the SDO technique, and it introduces a novel
framework for constraining the feedback rate as opposed to the
maximum number of hybrid ARQ sub-blocks. To illustrate the
potential of the proposed technique, we employ the augmented
framework on an erasure channel and demonstrate the value of
our approach by characterizing overall performance for a class
of random codes. System performance is measured in terms
of channel throughput and feedback overhead, while main-
taining the probability of decoding failure below a prescribed
threshold. This contribution is significant in that it provides a
widely applicable algorithmic blueprint for parameter selection
in hybrid ARQ with rate compatible codes, a popular combi-
nation in the literature [15]. In addition, we offer a new visual
interpretation for this optimization problem and its solution.

For erasure channels, the analysis reveals a clear separa-
tion between the effects of the unreliable channel and the
attributes of the underlying code in selecting block sizes.
In this context, a systematic approach that links decoding
success to the number of observed symbols is derived based
on moment matching. This proposed technique builds on the
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asymptotic behavior of random codes, and their connection to
well-known constants in number theory, namely, the Erdös-
Borwein constant (OEIS: A065442) and the digital search
tree constant (OEIS: A065443). Altogether, the performance
of a system with incremental redundancy hinges on three
main components: the coding scheme employed, the behavior
of the channel, and the quantization effects associated with
hybrid ARQ blocks. Using the tools developed herein, it is
possible to revisit many scenarios where the performance of
traditional systems is compared to that of hybrid ARQ, albeit
using optimal design parameters.

II. SYSTEM MODEL AND RENEWAL STRUCTURE

The scenario we wish to explore is a classical point-to-
point communication system where a source seeks to transmit
information to a destination over an unreliable, memoryless
channel. Information bits are protected from the effects of
channel variations through forward error correction. The focus
is on practical schemes with finite block lengths [16], [17].
Specifically, suitable performance is realized using incremental
redundancy in the form of hybrid ARQ. The system architec-
ture assumes that the destination is capable of supplying ac-
knowledgement bits (ACK/NACK) to the source in a faithful,
timely manner. While feedback is present, it is pertinent to
mention that feedback rate can be tuned via a cost structure
in the upcoming analysis. The design goal is to maximize
throughput subject to constraints on the probability of decod-
ing failure, the maximum number of feedback messages and,
possibly, the average feedback rate.

Conceptually, this article extends the sequential differential
optimization (SDO) methodology [13] to account for feedback
rate. As mentioned above, this technique provides an algo-
rithmic platform to select sizes for sub-blocks in incremental
redundancy in an efficient manner. In particular, SDO offers
a straightforward iterative procedure to identify admissible
assignments for optimally solving this resource allocation
problem, a solution to which would otherwise demand a
high-dimensional search. The contribution of this article is
threefold. We show how an extended version of SDO can
be employed to control average feedback rate. In a novel
application of the SDO framework, we demonstrate that this
approach is naturally suited to erasure channels. Thirdly,
we introduce a geometric interpretation for SDO that offers
new insight about the design task at hand. Before discussing
these results in detail, we must review modeling assumptions,
notation, and other preliminaries.

A. Forward Error Correction and Hybrid ARQ

The source wishes to convey a k-bit message to the desti-
nation. This message is encoded into a codeword of length n
for eventual transmission over the unreliable channel. Coded
symbols are sent in waves using hybrid ARQ. That is, the
codeword is partitioned into m blocks of symbols, each of
size `i ≥ 0. The total length of the codeword being fixed, we
necessarily have

∑m
i=1 `i = n. For notational convenience,

we introduce the partial sums nj =
∑j
i=1 `i. A graphical

illustration of these quantities appears in Fig. 1.

k-bit message
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`1 symbols `2 `3 · · · `m
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n2

n3

n-length codeword

Fig. 1. This diagram shows how a k-bit message is encoded into a codeword
with n symbols. The codeword is then partitioned into sub-blocks. These
blocks are sent sequentially to the destination, as dictated by hybrid ARQ.

The source initiates the transmission process by sending the
first n1 coded symbols. After completing this initial phase, the
destination attempts to decode the original message, treating
unaccounted symbols as erasures. If decoding succeeds, the
receiver acknowledges reception of the message (ACK), and
the source proceeds to the next message. Otherwise, the
receiver notifies the source of its failed attempt (NACK), and
thereby requests transmission of an additional sub-block of `2
symbols. Once received, these extra symbols, which can be
regarded as incremental redundancy, improve the probability
of decoding success at the destination. At every intermediate
stage, a similar process takes place with a supplemental block
of symbols being sent, followed by a decoding attempt, and
a feedback notification (ACK/NACK). If decoding fails at
the last step, then the n received symbols are discarded
and the process begins anew. Implicit in this scheme is the
capability by the receiver to accurately assess the outcome of
a decoding attempt and, potentially, a resilience to the rare
occurrence of an undetected decoding failure. The elapsed
time between the onset of the k-bit transmission process
and its eventual conclusion, either through an early ACK or
once maximum sub-block m has been passed on (whichever
comes first), is referred to as one round of the hybrid-ARQ
process. The parameters of this standard hybrid-ARQ scheme
are summarized in Fig. 2.

Tx Channel Rx

ACK/NACK feedback

Sub-block 1

Sub-block 2

Sub-block m

Fig. 2. Under hybrid ARQ, a communication round begins with the trans-
mission of a sub-block. The destination tries to decode based on the received
information. If unsuccessful, an additional sub-block is requested; otherwise,
the source moves on to the next message. The hybrid ARQ round continues
until the original message is recovered at the destination or all available sub-
blocks have been exhausted.

B. Performance Analysis for Memoryless Channels

The performance criteria involve system throughput, proba-
bility of decoding failure, and feedback rate. These measures
are determined by the nature of the underlying communication
channel and the properties of the forward error correction
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scheme put in place to protect information bits. For memo-
ryless channels, a fundamental attribute that ties hybrid ARQ
to these quantities is the probability of decoding success.

Suppose that the hybrid-ARQ scheme employs a length
assignment n = (n1, . . . , nm) ∈ Nm, where m is the index
of the last possible sub-block. Furthermore, let PACK(ni)
designate the probability that the destination decodes the
original message successfully using at most i sub-blocks. We
write PNACK(ni) = 1 − PACK(ni) to denote the probability
that the destination requests an additional set of symbols after i
sub-blocks have already been transmitted. The number of sub-
blocks sent within one instance of the hybrid-ARQ process
is random; its value may depend on the channel and code
realizations. As such, we introduce random variable S and
denote the probability mass function (PMF),

Pr(S = i) =

{
PACK(ni)− PACK(ni−1) i = 1, . . . ,m− 1

1− PACK(nm−1) i = m.

In general, the behavior of S adequately captures the number
of sub-blocks used within one round of the hybrid-ARQ pro-
cess and, for sensible coding strategies over erasure channels,
their distributions match exactly. Since S is a non-negative
discrete random variable, we can compute its mean as

E[S] =

m∑
i=1

Pr(S ≥ i) = m−
m−1∑
i=1

PACK(ni). (1)

Another pertinent expectation for the problem at hand is the
expected block length,

E[nS ] =

∞∑
t=1

Pr(nS ≥ t) =
∞∑
t=0

Pr(nS > t)

= n1 +

m−1∑
i=1

(ni+1 − ni) Pr(nS > ni)

= n1 +

m−1∑
i=1

(ni+1 − ni) (1− Pr(nS ≤ ni))

= nm −
m−1∑
i=1

(ni+1 − ni)PACK(ni).

(2)

Having established these expressions, we turn to renewal
theory to calculate average throughput and feedback rate for
this point-to-point communication system.

C. Renewal Structure

Owing to the structure of a memoryless channel, the inter-
completion times for hybrid-ARQ rounds are independent and
identically distributed. From this perspective, the number of
hybrid-ARQ rounds as a function of time forms a renewal
process [18]. A similar statement applies to the number of
feedback bits sent within a round, one bit from the destination
to the source per sub-block, as the hybrid ARQ scheme
progresses.

Formally, consider a transmission setting where the comple-
tion of an hybrid-ARQ round immediately leads to the begin-
ning of the next round. This corresponds to an infinite backlog
at the source, the standard setting to examine maximum

throughput. Let Sr be the number of sub-blocks used in the
rth hybrid-ARQ round. We emphasize that {nSr , r = 1, 2, . . .}
can then be interpreted as the time between the completion of
the (r − 1)th hybrid-ARQ round and that of the rth round.
Following common renewal notation, we let R0 = 0 and

Rr =

r∑
q=1

nSq r ≥ 1.

Accordingly, Rr becomes the completion time of the rth
round. Since the number of finished rounds by time t amounts
to the largest value of r for which the rth round is completed
before or at time t, we can write

R(t) = sup{r : Rr ≤ t}.

In words, R(t) denotes the number of completed hybrid ARQ
rounds at time t. Furthermore, given that nS is a non-negative
random variable with finite support, we immediately get

lim
t→∞

R(t) =∞ almost surely.

Expressing the renewal function as E[R(t)], we can apply the
elementary renewal theorem [18, Theorem 3.3.4], which yields

lim
t→∞

E[R(t)]

t
=

1

E[nS ]
.

Average throughput and feedback rate can be analyzed based
on this renewal structure. In these latter two cases, the renewal
reward framework applies.

For throughput, the reward structure is k information bits
when the message is decoded successfully at the destination;
and no information bits otherwise. The completed work at
time t can be expressed as

W (t) =

R(t)∑
r=1

Wr,

where Wr is the number of information bits successfully
received at the destination during round r. Then, we have

E[Wr] = E[W ] = kPACK(nm).

The renewal theorem for reward processes [18, Theorem 3.6.1]
delivers the desired expression for throughput,

lim
t→∞

E[W (t)]

t
=

E[R]

E[nS ]
=
kPACK(nm)

E[nS ]
. (3)

We emphasize that the necessary conditions for the theorem,
E[R] < ∞ and E[nS ] < ∞, are readily satisfied in view of
the fact that these random variables have finite support.

Regarding feedback bits as cost, one can also compute the
average feedback rate using the renewal theorem for reward
processes. In this case, the cost is captured by Sr, the number
of feedback bits employed in round r. The number of feedback
bits accumulated by time t is

S(t) =

R(t)∑
r=1

Sr,

and the feedback rate is therefore given by

lim
t→∞

E[S(t)]

t
=

E[S]

E[nS ]
. (4)
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As before, necessary conditions E[S] < ∞ and E[nS ] < ∞
for the renewal reward theorem are immediate because S and
nS have finite support.

D. Consolidated Optimization Framework

The expressions derived in Section II-C are accurate for
any specific length assignment n = (n1, . . . , nm). Yet, in
comparing potential assignments, it is crucial to develop
a unified framework. This is accomplished by choosing a
smooth approximation for the cumulative distribution function
(CDF) for the initial point at which a message becomes
decodable. Mathematically, the extended SDO methodology
derived herein relies on the availability of a strictly increasing,
differentiable function F (·) such that

PACK(t) ≈ F (t) (5)

for every vector assignment n and integer t ≥ 0. Fortunately,
as we will see shortly, finding such an approximation is
straightforward for the operational scenarios we wish to study.
As a side note, we stress that the same type of approximations
that underlie the vast body of work on dispersion [19] can be
leveraged in the current context as well. Moreover, the rapid
concentration of empirical measures for memoryless channels
too points at the existence of accurate approximations for most
practical scenarios.

III. SEQUENTIAL DIFFERENTIAL OPTIMIZATION

At this stage, we are in a position to formally state the class
of optimization problems we wish to study and, subsequently,
extend sequential differential optimization (SDO) as a platform
to obtain appropriate solutions. Throughout this section, we
embrace approximation (5) as a proxy for code performance.
In particular, F (·) denotes the CDF of a continuous probability
distribution; and F (t) captures the probability of the receiver
being able to successfully decode the original message after
at most t symbols have been transmitted. As is customary, we
use f(·) to denote the PDF associated with F (·); that is,

f(t) =
dF (x)

dx

∣∣∣∣
x=t

.

To prevent confusion and because it appears in several expres-
sions, we retain the use of PACK(nm) at the maximum length
of a codeword, n = nm.

A. Throughput Optimization

As mentioned above, our initial design goal is to select
n as to maximize average throughput, while maintaining the
probability of decoding failure for any given round below a
prescribed threshold δ.

Problem 1: Find an optimal block assignment vector n =
(n1, . . . , nm) for the following optimization problem,

maximize
n1,...,nm

kPACK(nm)

E[nS ]

subject to PNACK(nm) ≤ δ.
Pragmatically, the solution to Problem 1 must assume

an integer form, n = (n1, . . . , nm) ∈ Nm. Yet, integer

programs are known to be challenging and, consequently,
we first consider the relaxed version of the problem where
n ∈ Rm+ . We can employ the method of Lagrange multipliers
to identify candidate local maxima corresponding to this
constrained optimization problem. We note that the throughput
and the probability of decoding failure have continuous partial
derivatives for the relaxed version of Problem 1. Moving
forward, we introduce multiplier λδ into the formulation, and
we examine the Lagrangian expression defined by

J(n, λδ) =
kPACK(nm)

E[nS ]
− λδ (PNACK(nm)− δ) .

The Karush-Kuhn-Tucker (KKT) conditions associated with
J(n, λδ) are given by equation ∇J(n, λδ) = 0. We note that
PNACK(nm) is completely determined by nm. This consider-
ably simplifies the form of these necessary conditions. Taking
the partial derivative of J(n, λδ) with respect to n1 and setting
it equal to zero, we get

n2 = n1 +
F (n1)

f(n1)
.

In evaluating the derivative, we make use of expression (2)
and approximation (5). Performing similar actions for ni, i ∈
{2, . . . ,m− 1}, we obtain the iterative form

ni+1 = ni +
F (ni)− F (ni−1)

f(ni)
.

Taking the partial derivative with respect to nm and setting it
equal to zero yields the value

λδ =
kPACK(nm)

(E[nS ])
2

(
1− F (nm−1)

f(nm)

)
− k

E[nS ]
.

Differentiating J(n, λδ) with respect to λδ and equating it to
zero gives PNACK(nm) = δ or, equivalently, the condition

nm = F−1(1− δ). (6)

Adopting the convention n0 = −∞, the above necessary
conditions produce the recursive formula

ni+1 = ni +
F (ni)− F (ni−1)

f(ni)
i = 1, . . . ,m− 1. (7)

Since F (·) is chosen to be a distribution with f(·) > 0 over
the range of interest, the values generated by (7) form a strictly
increasing sequence

n1 < n2 < · · · < nm

for any admissible n1. Hence, using this approach, the multi-
dimensional optimization introduced in Problem 1 reduces to
a one-dimensional optimization challenge. The ensuing task
becomes finding a value of n1 for which (6) and (7) are solved
concurrently. This can readily be accomplished by performing
a one-dimensional exhaustive search over n1 ∈ [k, F−1(1 −
δ)).

Interestingly, the task of selecting vector n = (n1, . . . , nm)
is mathematically equivalent to finding the best (m− 1)-level
Lebesgue integral approximation to the CDF F (·) over the
interval [0, F−1(1−δ)]; this is illustrated in Fig. 3 for m = 4.
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Fig. 3. The task of selecting vector n = (n1, . . . , n4) is mathematically
equivalent to finding the best 3-level Lebesgue integral of the CDF F (·) over
the range [0, n4]. The KKT conditions require the two black bands to have
a same area.

This alternate interpretation stems from rewriting the expected
block length of (2) using F (·),

E[nS ] = nm −
m−1∑
i=1

(ni+1 − ni)F (ni).

The subtracted sum above corresponds to the gray area in
Fig. 3. Thus, maximizing throughput becomes equivalent to
minimizing E[nS ] or, alternatively, maximizing

∑m−1
i=1 (ni+1−

ni)F (ni). As mentioned earlier, parameter nm is given implic-
itly by the constraint PNACK(nm) = δ. The KKT conditions in
(7) can be construed as two (infinitesimal) rectangular regions
having a same area,

(F (ni)− F (ni−1)) ε = (ni+1 − ni)f(ni)ε.

In other words, the ratio of F (ni)− F (ni−1) over ni+1 − ni
should be equal to the derivative f(ni). This is depicted by
the black bands in Fig. 3.

B. Throughput Optimization with Constrained Feedback

The optimization described in Problem 1 sets a hard limit on
the number of increments. Yet, the aforementioned formulation
does not take into account the feedback rate induced by the
ACK/NACK structure. An alternate and more encompassing
viewpoint is to maximize average throughput while constrain-
ing both the number of increments and the feedback rate.
Conceptually, the extended framework offers a means to trade
off realized throughput against the implicit cost of feedback on
the reverse link. It can also be regarded as a way to identify
a larger candidate set for assignment vector n, which then
translates into a refined selection of optimal operating points in
terms of throughput and feedback rate. This is detailed below.

Problem 2: Find an optimal increment assignment vector
n = (n1, . . . , nm) for the following constrained optimization
problem,

maximize
n1,...,nm

kPACK(nm)

E[nS ]

subject to PNACK(nm) ≤ δ

and
E[S]

E[nS ]
≤ ρ.

Paralleling our earlier approach, we again turn to a La-
grangian formulation. The augmented objective function,
which takes into account feedback rate, changes into

J(n, λδ, λρ) =
kPACK(nm)

E[nS ]
− λδ (PNACK(nm)− δ)

− λρ
(

E[S]

E[nS ]
− ρ
)
.

In deriving the corresponding KKT conditions, we will make
use of the following convenient expression for E[S],

E[S] = m−
m−1∑
i=1

F (ni).

The first set of conditions associated with ∇J(n, λδ, λρ) = 0
can be written as

ni+1 = ni+
F (ni)− F (ni−1)

f(ni)
− λρE[nS ]

kPACK(nm)− λρE[S]
(8)

where i = 1, . . . ,m − 1 and n0 = −∞. We note that
the last term in (8) implicitly depends on n through E[nS ]
and E[S]. Furthermore, it assumes the same value for sub-
blocks i ∈ {1, . . . ,m − 1}. The necessary conditions for
an optimal solution can then be simplified by introducing
auxiliary variable

γ =
λρE[nS ]

kPACK(nm)− λρE[S]
. (9)

We emphasize that γ > 0 in the Lagrangian formulation
whenever the rewards associated with throughput exceed the
cost of feedback, i.e.,

kPACK(nm)

E[nS ]
− λρ

E[S]

E[nS ]
> 0.

Under this expanded notation, (8) becomes

ni+1 = ni+
F (ni)− F (ni−1)

f(ni)
−γ i = 1, . . . ,m−1. (10)

The partial derivative of J(n, λδ, λρ) with respect to nm gives

λδ =
kPACK(nm)− λρE[S]

(E[nS ])2

(
1− F (nm−1)

f(nm)

)
− k

E[nS ]
.

Taking the derivative of the objective function with respect to
λδ yields condition nm = F−1(1−δ), as before. The feedback
rate constraint in Problem 2 is recovered by differentiating
with respect to λρ.

For Problem 2, the Lagrangian analysis showcases that the
multi-dimensional optimization can be solved by performing
an exhaustive search over a two-dimensional set. The search
takes place over all admissible n1 ∈ [k, nm] and γ ≥ 0. The
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geometric interpretation of this optimization task is similar to
that of Problem 1 in that the aim is to maximize the shaded
area. In this latter formulation, optimal rectangular shapes are
again governed by f(·), but they are altered by a constant
width γ as illustrated in Fig. 4. Intuitively, the role of the
γ-bands is to limit feedback rate.
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Fig. 4. When the optimization objective accounts for feedback, the task
remains selecting n = (n1, . . . , n4) as to maximize the shaded area.
However, in this case, the shape of the rectangle is not only determined by
the derivative f(·); a strip of width γ is added to every rectangle as to limit
feedback. This simultaneously reduces throughput and feedback rate.

IV. SDO APPLIED TO ERASURE CHANNELS

In this section, we illustrate the value of the extended
SDO methodology with constrained feedback by applying
it to binary erasure channels [20], [21]. These channels are
memoryless and, as such, erasures form sequences of inde-
pendent and identically distributed random variables. When an
erasure occurs, the corresponding symbol is lost; otherwise,
the channel input is received unaltered at the destination.
Throughout, we represent the probability of an erasure by ε.
For a fixed erasure probability, the number of observed (non-
erased) symbols available to the receiver after t symbols are
transmitted is a random variable, which we denote by Rt. This
random variable is characterized by a binomial distribution,

PRt
(r) =

(
t

r

)
εt−r(1− ε)r r = 0, . . . , t (11)

where r designates the number of unerased symbols. Note that
we adopt the convention 00 = 1 and hence, when ε = 0, we
have PRt(t) = 1 and PRt(r) = 0 for all r 6= t.

To shield information bits from channel erasures, redun-
dancy is added to the original message using random coding.
The encoding of a message involves a sequence of steps.
First, a random parity-check matrix of size (n − k) × n is
generated, with individual entries selected uniformly over a bi-
nary alphabet, independently from one another. The nullspace
of the realized matrix produces a codebook. A message is
then mapped to a codeword using an arbitrary choice function
known to both the source and the destination [22]. To recover

the original message, the destination employs maximum-
likelihood decoding. This coding strategy is known to perform
well, and it serves as an analytically tractable proxy for more
pragmatic codes [3], [21]. One of the attractive aspects of
random coding lies in the flexibility it affords in terms of
selecting block length and code rate. This enables a unified
analysis of overall performance as a function of design pa-
rameters. Furthermore, the statistical symmetry in this random
coding scheme produces a probability of decoding success that
depends solely on the number of erased symbols, rather than
their precise locations. These attributes make random linear
codes ideally suited for an explicative case study of SDO. To
apply the SDO methodology in the context of binary erasure
channels with random coding, we need to obtain expressions
for PACK(·) and its smooth approximation F (·). This is best
accomplished by treating the properties of random coding and
the effects of channel erasures separately.

A. Asymptotic Analysis of Random Codes
For the random coding scheme at hand, we use Ps(k, n, r) to

represent the probability of decoding success as a function of
the number of unerased symbols r available at the destination.

Lemma 1: The probability of decoding success for the
random linear coding scheme described above is

Ps(k, n, r) =


0, r < k∏n−r−1
`=0

(
1− 2`−(n−k)

)
, k ≤ r ≤ n

1, r > n.

(12)

Proof: See Appendix, Section A.
Although the number of sent symbols and, consequently,

the number of symbols available at the destination cannot
exceed the blocklength, we find it useful to extend Ps(k, n, r)
in (12) to cases where r > n. The purpose of this slight abuse
of notation will become manifest shortly when we compare
systems with alternate coding schemes. A quick and useful
corollary to this result pertains to stochastic dominance.

Corollary 1: Given any k and r, the function Ps(k, n, r) is
monotone decreasing in n.

Proof: See Appendix, Section B.

B. Asymptotic Behavior over Reliable Channels
We initiate our analysis by focusing on the special case of

a lossless channel, with ε = 0. We examine an elementary
version of the problem where symbols are obtained in a
sequential manner, and a decoding attempt takes place after
every new symbol arrives (not only upon the completion of
sub-blocks). For system parameters k and n, let Mn be a
random variable that denotes the number of symbols needed
for the message to become decodable, following chronological
ordering. Under these circumstances, we have k ≤ Mn ≤ n
and Pr(Mn ≤ r) = Ps(k, n, r). We wish to analyze the
asymptotic behavior of the mean and variance of Mn as
n grows unbounded. To achieve this objective, we leverage
two known constants. We denote the Erdös-Borwein constant
(OEIS: A065442) by

c0 =

∞∑
i=1

1

2i − 1
= 1.6066951524...
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and the digital search tree constant (OEIS: A065443) by

c1 =

∞∑
i=1

1

(2i − 1)2
= 1.1373387363...

The following infinite sums of products, presented in the form
of a lemma, are key components in our impending derivations.

Lemma 2: For infinite product ai = 2−i
∏∞
j=i+1

(
1− 2−j

)
,

it holds that
∞∑
i=0

ai = 1

∞∑
i=0

iai = c0

∞∑
i=0

i2ai = c20 + c0 + c1 = 5.3255032015...

Proof: See Appendix, Section C.
Let PMn

(·) represent the PMF associated with Mn; that is,
PMn

(r) = Ps(k, n, r)− Ps(k, n, r − 1). This function can be
rewritten as

PMn
(r) = 2k−rPs(k, n, r) = 2k−r

n−r−1∏
`=0

(
1− 2`−(n−k)

)
for k ≤ r ≤ n. Moreover, PMn

(r) = 0 for r < k or r > n.
The normalization axiom applied to this problem ensures that∑n
r=k PMn

(r) = 1. Thus, we can compute the mean of Mn

as

E[Mn] =

n∑
r=k

rPMn
(r) =

n−k∑
i=0

(k + i)2−i
n−k∏
j=i+1

(
1− 2−j

)
.

Similarly, the second moment of Mn is equal to

E
[
M2
n

]
=

n∑
r=k

r2PMn(r) =

n−k∑
i=0

(k + i)22−i
n−k∏
j=i+1

(
1− 2−j

)
and its variance can be evaluated based on the first two
moments. Passing to the limit, as n goes to infinity, we get
the following result.

Theorem 1: For k fixed, the mean and variance of Mn are
given by

lim
n→∞

E[Mn] = k + c0 (13)

lim
n→∞

Var[Mn] = c0 + c1. (14)

Proof: As n becomes large, we get the expressions

lim
n→∞

E[Mn] =

∞∑
i=0

(k + i)2−i
∞∏

j=i+1

(1− 2−j)

lim
n→∞

E
[
M2
n

]
=

∞∑
i=0

(k2 + 2ki+ i2)2−i
∞∏

j=i+1

(
1− 2−j

)
.

Then, by Lemma 2, we get limn→∞ E[Mn] = k + c0.
Likewise, limn→∞ E

[
M2
n

]
= k2 + 2kc0 + (c20 + c0 + c1).

Since the variance of Mn can be derived as Var[Mn] =
E
[
M2
n

]
− (E[Mn])

2, we readily obtain (14), as desired.

C. Asymptotic Behavior over Unreliable Channels

At this stage, we are ready to address the more elaborate
problem where symbols are transmitted over an unreliable
channel. That is, individual symbols are erased with proba-
bility ε > 0. For k, n, and ε fixed, we represent the length
of a communication round by Nn. Note that k ≤ Nn ≤ n.
We can partition rounds into two categories: (i) the receiver
is able to decode before all the symbols are transmitted, and
Nn corresponds to the first instant at which the message can
be successfully recovered; (ii) all the symbols are exhausted
during the transmission phase, and Nn = n irrespective of the
outcome of the decoding process. Mirroring the steps above,
we inspect the asymptotic behavior of the mean and variance
of Nn as n increases to infinity.

Define Er as the number of symbols lost prior to observing
the rth unerased symbols at the destination. We write PEr

(·)
to refer to the PMF of Er, and we emphasize that this
random variable possesses a negative binomial distribution
with parameters r and ε. In other words, we have

PEr
(e) =

(
r + e− 1

e

)
εe(1− ε)r e ≥ 0.

Then, we get Pr(Nn = t) =
∑t
r=k PEr

(t − r)PMn
(r) for

k ≤ t < n and, necessarily,

Pr(Nn = n) = 1−
n−1∑
t=k

Pr(Nn = t)

=

∞∑
t=n

t∑
r=k

PEr
(t− r)PMn

(r).

Consequently, we can write

E[Nn] =

n∑
t=k

tPr(Nn = t)

=

∞∑
t=k

t∑
r=k

min(t, n)PEr
(t− r)PMn

(r)

=

n∑
r=k

∞∑
e=0

min(r + e, n)PEr (e)PMn(r).

The second moment can be expressed as

E
[
N2
n

]
=

n∑
r=k

∞∑
e=0

min((r + e)2, n2)PEr (e)PMn(r).

Collecting these results and evaluating limit expressions, we
arrive at the following theorem.

Theorem 2: Given parameters k and ε,

µ(k, ε) = lim
n→∞

E[Nn] =
k + c0
1− ε

(15)

σ2(k, ε) = lim
n→∞

Var[Nn] =
(k + c0)ε+ c0 + c1

(1− ε)2
. (16)

Proof: We initiate this argument by establishing bounds
on E[Nn]. Observing that min(r + e, n) ≤ r + e, we get

E[Nn] ≤
n∑
r=k

∞∑
e=0

(r + e)PEr
(e)PMn

(r) ∀n ≥ k.
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For a memoryless erasure channel, Er possesses a negative
binomial distribution with parameters r and ε. Thus,

∞∑
e=0

(r + e)PEr
(e) = r

∞∑
e=0

PEr
(e) +

∞∑
e=0

ePEr
(e)

= r + E[Er] =
r

1− ε
∀r ≥ 0.

Substituting this expression into the double summation above,
we get

E[Nn] ≤
1

1− ε

n∑
r=k

rPMn
(r) =

E[Mn]

1− ε
∀n ≥ k. (17)

We turn to establishing a lower bound for E[Nn]. Restricting
the number of non-negative summands, we get

E[Nn] ≥
n∑
r=k

n−r∑
e=0

(r + e)PEr
(e)PMn

(r).

Corollary 1 asserts that Ps(k, n, r) is monotone decreasing in
n. Further, PMn

(r) = 2k−rPs(k, n, r) for all k ≤ r ≤ n.
Then, we gather that PMn

(r) is monotone decreasing in n
for any r such that k ≤ r ≤ n. This implies that PMn(r) ≥
limn→∞ PMn(r) for all n and all k ≤ r ≤ n. We note that

lim
n→∞

PMn
(r) = 2k−r

∞∏
j=r−k+1

(1− 2−j).

Therefore, for any n, we can write

E[Nn] ≥
n∑
r=k

n−r∑
e=0

(r + e)PEr
(e)2k−r

∞∏
j=r−k+1

(1− 2−j)

=

n∑
r=k

2k−r
n−r∑
e=0

(r + e)PEr (e)

∞∏
j=r−k+1

(1− 2−j).

(18)

Using Theorem 1, we deduce that the RHS of (17) converges
to (k + c0)/(1 − ε) as n grows unbounded. Furthermore, in
view of Lemma 2, we see that the RHS of (18) converges to

∞∑
r=k

2k−r
∞∑
e=0

(r + e)PEr
(e)

∞∏
j=r−k+1

(1− 2−j)

=
1

1− ε

∞∑
r=k

r2k−r
∞∏

j=r−k+1

(1− 2−j)

=
1

1− ε

∞∑
i=0

(k + i)2−i
∞∏

j=i+1

(1− 2−j) =
k + c0
1− ε

.

Combining (17) and (18), the sandwich theorem yields (15).
By adopting an analogous strategy, we can produce upper

bound

E
[
N2
n

]
≤

n∑
r=k

∞∑
e=0

(r + e)2PEr
(e)PMn

(r)

=
E
[
M2
n

]
+ εE[Mn]

(1− ε)2
,

(19)

and corresponding lower bound

E
[
N2
n

]
≥

n∑
r=k

n−r∑
e=0

(r + e)2PEr (e)PMn(r)

≥
∞∑
r=k

2k−r
∞∑
e=0

(r + e)2PEr
(e)

∞∏
j=r−k+1

(1− 2−j)

(20)

for any n. As n goes to infinity, the RHS of (19) converges
to
(
(k + c0)

2 + (k + c0)ε+ c0 + c1
)
/(1−ε)2 by Theorem 1.

Likewise, by Lemma 2, the RHS of (20) converges to

1

(1− ε)2
∞∑
r=k

r(r + ε)2k−r
∞∏

j=r−k+1

(1− 2−j)

=
1

(1− ε)2
∞∑
i=0

(k + i)22−i
∞∏

j=i+1

(1− 2−j)

+
ε

(1− ε)2
∞∑
i=0

(k + i)2−i
∞∏

j=i+1

(1− 2−j)

=
(
(k + c0)

2 + (k + c0)ε+ c0 + c1
)
/(1− ε)2.

Putting (19) and (20) together, the sandwich theorem offers
a tight characterization of the asymptotic second moment of
Nn,

lim
n→∞

E
[
N2
n

]
=
(
(k + c0)

2 + (k + c0)ε+ c0 + c1
)
/(1− ε)2.

From its first two moments, we can infer the limiting variance
of Nn,

lim
n→∞

Var[Nn] = lim
n→∞

E
[
N2
n

]
− lim
n→∞

(E[Nn])
2

= ((k + c0)ε+ c0 + c1)/(1− ε)2,

as desired.

D. Approximate Distribution via Moment Matching

For the application of the (n, k) random linear coding
scheme at hand over an erasure channel (with erasure probabil-
ity ε), the probability that the destination decodes the original
message successfully at time t or earlier is given by

PACK(t) =

{
1−

∑t
e=0(1− Ps(k, n, t− e))PRt(t− e), k ≤ t ≤ n,

0, 0 ≤ t < k,
(21)

where PRt(·) and Ps(k, n, ·) are given in (11) and (12),
respectively.

The extended SDO framework relies on a smooth approxi-
mation for PACK(·) as indicated in (5). A natural approach
to obtaining such a distribution consists of identifying a
fitting distribution family, like the collection of Gaussian
distributions, and subsequently apply moment matching to
get suitable parameters [23]. Since Gaussian distributions are
determined by two parameters, it suffices to compute the mean
and variance to select a member within the Gaussian family.
Hereafter, we adopt the Gaussian distribution for illustrative
purposes. This choice can be motivated, partly, through the
Central Limit Theorem.
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Leveraging results from the previous sections, we let F (·)
be a Gaussian distribution with mean µ(k, ε) and variance
σ2(k, ε), as defined in Theorem 2. Mathematically, we take

F (t) = 1−Q
(
t− µ(k, ε)
σ(k, ε)

)
where σ(k, ε) =

√
σ2(k, ε) and Q(·) is the complementary

CDF of a standard Gaussian random variable,

Q(t) =
1√
2π

∫ ∞
t

e−ξ
2/2dξ.

In view of the geometric interpretation of the SDO algorithm
introduced in Section III, we gather that the smaller is the
maximum point-wise distance between the functions F (t) and
PACK(t), i.e., supt∈[0,n]|F (t)− PACK(t)|, the smaller would
be the difference in throughput between the optimal solution
and the solution derived via the extended SDO algorithm.
Luckily, these two functions tend to be very close, as illus-
trated in Fig. 5.
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Fig. 5. This graph showcases how the approximate CDF obtained through
moment matching is very close to the exact CDF for random linear coding
over an erasure channel. In this case, parameters k = 64, n = 127, and
ε = 0.358 are chosen. The small gap between the two functions hints at a
near-optimal SDO performance.

The approximate CDF F (·) enables the application of the
extended SDO algorithm to find near optimal values for sub-
block sizes n. For numerical analysis, we adopt parameters
k = 64 and n = 127. We assume that the binary erasure
channel features an erasure probability given by ε = 0.358.
The Shannon capacity of this particular channel is 0.642 bits
per channel use [20]. Under the random linear coding scheme
of Section IV, but with unlimited feedback, the maximum
throughput becomes

kPACK(n)

E[nS ]
=

kPACK(n)

n−
∑n−1
t=1 PACK(t)

= 0.624756...,

where n = 127, k = 64, ε = 0.358, and PACK(t) is given
by (21). We refer to this throughput value as the Random
Linear Code Limit in Fig. 6 and Fig. 8. The difference between
this throughput value and the Shannon capacity of the erasure

channel is attributable to the limitations of the coding scheme
and the finite block length. The latter value serves as an
optimistic upper bound on the performance of incremental
redundancy applied to this particular setting.

E. Performance Analysis and Validation

We use this same setting to present the performance of
the extended SDO algorithm applied to the formulation of
Problem 2. The constraint on the maximum number of feed-
back messages takes value in m ∈ {1, 2, 4, 8, 16}. In addition,
we also consider the unconstrained setting where m = ∞.
We study performance for an average feedback rate varying
between zero and 0.2 bits per channel use. Note that the
upper boundary on the feedback rate, 0.2 bits per channel use,
effectively reduces to having no constraint on the feedback rate
because performance saturates. Every instance of this problem
essentially entails an exhaustive search over a two-dimensional
set, as discussed in Section III-B. This leads to a very rapid
execution, much faster than an exhaustive search over all sub-
block sizes for large m. Furthermore, the y-intercepts on the
RHS of the plot correspond to the realized throughput values
associated with the SDO algorithm applied to the formulation
of Problem 1. These numerical findings are shown in Fig. 6.
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Fig. 6. This graph plots realized throughput as functions of maximum
feedback rate for SDO-based system optimization. The curves demonstrate
diminishing returns as functions of both, the maximum number of messages,
m, and the limit on average feedback rate. Performance rapidly gets close to
Shannon, but then saturates due to the limitations of the coding scheme.

These numerical findings are conceptually appealing be-
cause they support the use of incremental redundancy based
on one-bit feedback messages. They also attest to the value
of the extended SDO algorithm in finding appropriate sizes
for sub-blocks. The structural properties of the extended SDO
scheme, along with its iterative nature, enable the design and
analysis of incremental redundancy in the form of hybrid ARQ
in many contexts. Two important issues remain. First, we
wish to know how the performance of an SDO-based system
compares to that of a hybrid ARQ implementation with opti-
mal parameters. Numerical methods suggest that the realized
throughput values of comparable systems are very close, at
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least for values of m where an exhaustive search is possible.
To substantiate this claim, we provide a comparative plot of
SDO-based performance against optimal throughput for the
case where m = 3; as seen from Fig. 7, the realized throughput
between optimal parameters and SDO-derived values for any
given feedback constraint is essentially indistinguishable. For
illustrative purposes, the figure also includes the performance
point for every admissible selection of n. The optimal curve
is then obtained as the maximum throughput among all the
points whose average feedback rate falls below the prescribed
limit.
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Fig. 7. The performance achieved using SDO is nearly indistinguishable from
the throughput associated with the optimal hybrid-ARQ schemes obtained via
exhaustive searches. The graph also plots the performance point for every
admissible n; collectively these points form the umbrella shape. The curves
correspond to the case where the maximum number of feedback messages is
limited to three.

The second persisting issue is related to the design decision
to employ one-bit feedback messages. Arguably, enhanced
performance could potentially be obtained by using larger
feedback messages, albeit less often. This question raises tech-
nical issues. While it is straightforward to assign a meaning to
one-bit (ACK/NACK) feedback, mapping a multi-bit feedback
message to a particular set of actions is more involved. To
circumvent this difficulty and showcase the suitability of
one-bit feedback in the context of hybrid ARQ, we adopt
the following approach. We compare the performance of the
original SDO-based, one-bit feedback implementation to that
of a system where the maximum number of feedback messages
remains the same, but the size of individual messages is
unbounded. In the latter case, we assume that the decoder
feeds back the total number of unerased symbols received
at the destination thus far, thereby enabling the source to
select the most suitable block size for the system under
current conditions. Mathematically, solving the problem for
unbounded message size warrants the application of a finite-
horizon dynamic program [24] whereby the system selects
the optimal size for the next sub-block after every feedback
message is received. The state of this dynamic program
contains the decision time with respect to the onset of the
round, the number of encoded bits received thus far, and

the number of feedback messages used in the past. Based
on this information, the system determines the size of the
next increment and the source transmits the corresponding
symbols over the erasure channel. Figure 8 contrasts the
performance of the SDO-based, one-bit feedback system to
that of the implementation with unlimited packet sizes. Despite
the drastic information asymmetry between the two schemes,
their overall performance is very close. This can be explained,
partly, through the fact that for the purpose of inference and
decision making, the first few bits of a message are often the
most informative. In any case, the one-bit implementation is
evidently a reasonable pragmatic approach.
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Fig. 8. This figure offers supportive evidence to the fact that one-bit
(ACK/NACK) feedback is a suitable paradigm for incremental redundancy
over erasure channels with limited feedback. The one-bit and multi-bit
implementations above are subject to the same restriction on the number of
feedback messages, yet the messages are unlimited in size in the latter system,
whereas they are constrained to one bit in the former one. Despite this strong
information asymmetry, performance is somewhat comparable.

V. DISCUSSION

This article casts SDO as a classic optimization problem
and extends this methodology to include constraints on feed-
back rate. It also offers a novel geometric interpretation that
showcases how decisions regarding the sizes of hybrid ARQ
sub-blocks are related to Lebesgue approximations of the area
under the CDF of the first decoding success. The power
of the extended SDO algorithm is exemplified by applying
this approach to hybrid ARQ over erasure channels. Due to
their structure, erasure channels are especially well suited
to SDO and the resulting realized throughput is essentially
indistinguishable from optimal performance. While throughput
increases with the maximum number of sub-blocks as antic-
ipated, numerical results suggest that only a small number
of feedback messages suffice to achieve a performance close
to the maximum throughput obtained with a potentially un-
bounded number of feedback messages. This an encouraging
conclusion for pragmatic systems, as it favors simplicity over
overly complex implementations.

There are several possible avenues of future research. While
this contribution offers an in-depth treatment of SDO over
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classical channels, it may be possible to extend the technique
to fading channels. In the latter context, both the size of
sub-blocks and the role of side information warrant further
attention. In particular, the renewal problem structure will
have to be revisited. In addition, SDO may offer a principled
approach to assessing the potential benefits of incremental
redundancy in the context of age of information and delay-
sensitive communications with queues. Some preliminary steps
have been taken along these lines in the literature, yet these
topics are still not fully developed. Finally, the methodology
may apply to uncoordinated multiple access systems where
the access point is given the opportunity to broadcast one-
bit feedback to active devices. Despite being collectively very
promising, these candidate directions lie outside the scope of
this article and are therefore relegated to future inquiries.
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APPENDIX

A. Proof of Lemma 1

Let H be a random matrix of size (n− k)×n, where each
entry is selected independently and uniformly from {0, 1}.
Consider an (n, k) linear code with parity-check matrix H .
For any codeword c, we have HcT = 0. The destina-
tion can decode the message from any r received symbols
ci1 , . . . , cir provided that the n−r columns of H with indices
[n] \ {i1, . . . , ir} are linearly independent. That is, Ps(k, n, r)
is equal to the probability that the n− r randomly generated
binary column vectors of length n−k are linearly independent.
This event has probability

Ps(k, n, r) =

n−r∏
l=1

(
2n−k − 2l−1

)
2n−k

=

n−r−1∏
l=0

(
1− 2l−(n−k)

)
for k ≤ r ≤ n, and Ps(k, n, r) = 0 for r < k.

B. Proof of Corollary 1

Let k and r be fixed. Consider two distinct block lengths n1
and n2 such that n1 < n2. If r < k, then the receiver cannot
decode and Ps(k, n1, r) = Ps(k, n2, r) = 0. By definition,
when r > n1, we have Ps(k, n1, r) = 1, which is necessarily
greater than or equal to Ps(k, n2, r). Thus, the case of interest
is k ≤ r ≤ n1 < n2, with

Ps(k, n2, r) =

n2−r−1∏
l=r−k+1

(
1− 2−l

)
=

(
n1−r−1∏
l=r−k+1

(
1− 2−l

))(n2−r−1∏
l=n1−r

(
1− 2−l

))

= Ps(k, n1, r)

n2−r−1∏
l=n1−r

(
1− 2−l

)
≤ Ps(k, n1, r).

By the arguments above, we gather that the function
Ps(k, n, r) is monotone decreasing in n for k and r fixed.
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C. Proof of Lemma 2
First, we recall notation ai = 2−i

∏∞
j=i+1

(
1− 2−j

)
from

the statement of Lemma 2. We start this proof with the simplest
of the three sums, namely

∑∞
i=0 ai = 1. To this end, we define

bl =

∞∑
i=0

2−i
i+l∏

j=i+1

(1− 2−j) ∀l ∈ N0.

We observe that b0 = 2 and liml→∞ bl =
∑∞
i=0 ai. Leveraging

the fact that 2−i = 2−(i−1)−2−i for any i ∈ Z and
∏l−1
j=0(1−

2−j) = 0, we can write

bl − bl−1

= −
∞∑
i=0

2−i
(
2−(i−1+l) − 2−(i+l)

) i+l−1∏
j=i+1

(1− 2−j)

= 2−(l+1)
∞∑
i=0

2−(i−1)
(
1− 2−i − 1

) i+l−1∏
j=i+1

(1− 2−j)

= 2−(l+1)(bl − 2bl−1).

This implies that, for any l ∈ N0, we have bl
(
1− 2−(l+1)

)
=

b0(1 − 2−1). Taking the limit as l grows unbounded, we get
liml→∞ bl = b0/2 = 1. Thus,

∑∞
i=0 ai = liml→∞ bl = 1, as

desired.
Next, we consider the equation

∑∞
i=0 iai = c0. Using

Euler’s pentagonal number theorem (see, e.g., [25, p. 20]),
it can be shown that

∞∏
i=0

1

1− 2−ix
=

∞∑
i=0

xi
i∏

j=1

1

1− 2−j
. (22)

Differentiating with respect to x on both sides, we get[ ∞∑
i=0

2−i

1− 2−ix

] ∞∏
j=0

1

1− 2−jx

 =

∞∑
i=1

ixi−1
i∏

j=1

1

1− 2−j
.

Setting x = 1/2, we obtain[ ∞∑
i=0

2−i

1− 2−i−1

] ∞∏
j=0

1

1− 2−j−1


=

∞∑
i=1

i2−i+1
i∏

j=1

1

1− 2−j
.

By a simple change of variables and rearranging the terms,
we arrive at

c0 =

∞∑
i=1

2−i

1− 2−i
=

∞∑
i=1

i2−i
∞∏

j=i+1

(1− 2−j) =

∞∑
i=0

iai.

The procedure followed to get the third expression is similar
in nature. First, we take derivatives with respect to x twice on
both sides of identity (22). Then, we evaluate these expressions
at x = 1/2. After rearranging terms, this yields[ ∞∑

i=1

(
2i − 1

)−1]2
+

[ ∞∑
i=1

(
2i − 1

)−2]
=

∞∑
i=0

i(i− 1)ai.

Noticing that these terms are related to constants intro-
duced earlier, with c0 =

∑∞
i=1

(
2i − 1

)−1
and c1 =∑∞

i=1

(
2i − 1

)−2
, we readily obtain the desired expression.


