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Abstract—Contemporary wireless networks are tasked with
supporting different connection profiles, including real-time traf-
fic and delay-sensitive communications. This creates a need
to better understand the fundamental limits of forward error
correction in non-asymptotic regimes. This article characterizes
the performance of block codes over finite-state channels and
evaluates their queueing performance under maximum-likelihood
decoding. Classical results from digital communications are
revisited in the context of channels with rare transitions, and
bounds on the probabilities of decoding failure are derived for
random codes. This creates an analysis framework where channel
dependencies within and across codewords are preserved. These
results are subsequently integrated into a queueing problem
formulation.

Index Terms—Block codes, Communication systems, Data
communication, Markov processes, Queuing analysis.

I. INTRODUCTION

With the ever increasing popularity of advanced mobile
devices such as smartphones and tablet personal computers,
the demand for low-latency, high-throughput wireless services
continues to grow rapidly. The shared desire for a heightened
user experience, which includes real-time applications and
mobile interactive sessions, acts as a motivation for the study
of highly efficient communication schemes subject to stringent
delay constraints. An important aspect of delay-sensitive traffic
stems from the fact that intrinsic delivery requirements may
preclude the use of very long codewords. As such, the insights
offered by classical information theory and based on Shannon
capacity are of limited value in this context. A primary goal
of this article is to develop a better understanding of delay-
constrained communication, queue-based performance criteria,
and service dependencies attributable to channel memory. In
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particular, we seek to derive performance limits for delay-
aware systems operating over channels with memory.

Computing probabilities of decoding failure for specific
communication channels and coding schemes is of great
interest. This line of work dates back to the early days of
information theory [1, p. 233] and it has received considerable
attention. One approach that has been successful consists of
deriving exponential error bounds on the behavior of asymp-
totically long codewords. This approach was popularized by
Feinstein, Shannon, and Gallager [2], [3], [4]. Such bounding
techniques have been applied to both memoryless channels and
finite-state channels with memory. However, for finite-state
channels where the receiver does not have perfect channel-state
information and the transmitter does not get complete feedback
of the received sequence, there has been little progress towards
a computable expression for the error exponent since [5], [4].
Practically, the Monte Carlo computation of the capacity [6],
[7], [8], [9] and, more recently, channel dispersion [10] have
had the most impact. It is worth mentioning [11], which
requires partial feedback, and [12], which assumes vanishing
rates. In general, exponential error bounds are quite accurate
for long, yet finite block lengths. The interplay between error
probability, rate and blocklength has also gathered attention in
papers focusing on the error exponents regime, the normal ap-
proximation regime, and the moderate deviations regime [13],
[14], [15], [16]. This renewed interest in the performance of
coded transmissions points to the timeliness of the topic under
investigation [17], [18], [19], [20], [21], [22].

A distinguishing feature of the approach that we wish to
develop is the focus on indecomposable channels with memory
and state-dependent operation. In many established asymptotic
frameworks, channel parameters are kept constant while the
length of the codeword increases to infinity. Although this
point of view leads to mathematically appealing characteriza-
tions, the resulting bounds on error probabilities do not depend
on the initial or final states of the underlying communication
channel. This situation can be explained through the fact that,
no matter how slow the mixing time of the physical channel is,
the duration of a codeword eventually far exceeds this quantity.
Still, in many scenarios, the service requirements imposed
on a communication link forces the use of relatively short
codewords, with no obvious time-scale separation between the
duration of a codeword and the mixing time of the channel.
In practice, the tradeoff between performance and delay often
encourages system designers to choose block lengths of the
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same order as the channel mixing time.
The mismatch between existing techniques and commonly

deployed systems, together with the growing popularity of
real-time applications on wireless networks, demands a novel
approach where the impact of boundary conditions are pre-
served throughout the analysis. A suitable methodology should
be able to capture both the effects of channel memory as
well as the impact of the channel state at the onset of a
codeword [23], [24]. In this article, we are interested in
regimes where the block length is of the same order or smaller
than the coherence time of the channel. Informally, we wish
to study the scenario where the mixing time of the underlying
finite-state channel is similar to the time necessary to transmit
a codeword. Such asymptotic regimes, known as rare-transition
or slow-mixing regimes, can be achieved by slowing down the
profile of the underlying channel as the block length of the
code grows unbounded.

We limit our attention to the case where the transition rate of
the finite-state fading channel is slowed so that the expected
number of state transitions is finite in each codeword. This
model leads to two important phenomena. First, the state of
the channel at the onset of a transmission has a significant
impact on the empirical distribution of the states within a
codeword transmission cycle. Second, channel dependencies
may extend beyond the boundaries of individual codewords.
This is in stark contrast with rapidly mixing channels where
initial channel conditions have no effects on the probability
of decoding failure. It also differs from block-fading models
where the evolution of the channel is independent from block
to block. Our proposed framework accounts for scenarios
where decoding events are correlated over time.

Rare-transition regimes have been studied in other contexts
such as channel estimation, asymptotic filtering, and entropy
rate analysis of hidden Markov processes [25], [26], [27], [28].
Herein, we examine probabilities of decoding failure, their
distributions and temporal characteristics within the context
of rare transitions. The purpose of deriving upper bounds on
the probabilities of decoding failure for rare transitions is to
capture overall performance for systems that transmit data
using block lengths on the order of the coherence time of
their respective channels.

Specifically, this article proposes a methodology to derive
Gallager-type exponential bounds applied to probabilities of
decoding failure in rare-transition regimes. By construction,
these bounds depend explicitly on the initial and terminating
channel states at the codeword boundaries. The analysis is
conducted for the scenario where channel state informa-
tion is available at the receiver. The necessary mathematical
machinery is then provided to develop approximate upper
bounds which considerably increase computational efficiency.
Numerical results are provided to show that the price to pay
for this efficiency is a small loss in accuracy. The ensuing
results are compared to the exact probabilities of decoding
failure obtained for a Gilbert-Elliott channel under a minimum
distance decoder and a maximum-likelihood decision rule [1],
[29], [30].

The analysis conducted under the assumption of channel
state information available at the receiver may not match

the particular system one is interested in. This points to
the complication hidden in computing the error exponent in
the absence of state information, which makes the problem
intractable. One should notice that in [4], the error exponent
is computed for finite-state channels when the channel state
is known at the receiver; this is the only known tractable
case. Our results will be different in the sense that Gallager
considers an ergodic regime for which the equations simplify
using an eigenvalue characterization, whereas we are interested
in the rare-transition regime.

We believe that, in the rare-transition regime, the bounds de-
rived under the assumption of state information at the receiver,
result in the right asymptotic behavior when there is no state
information. This is due to the fact that, asymptotically, the
receiver has an unbounded number of channel observations
to estimate the state between consecutive transitions. This
assumption provides a valid simplification for deriving upper
bounds in this regime. This intuition is supported by the
mathematical results in [26], [27].

The potential implications of this framework are then dis-
cussed in terms of queueing theory. For carefully selected
channel models and arrival processes, a tractable Markov
structure composed of queue length and channel state is iden-
tified. This facilitates the analysis of the stationary behavior
of the system, leading to evaluation criteria such as bounds
on the probability of the queue exceeding a threshold. We
exploit the results of the error-probability analysis in the
rare-transition regime to evaluate the queueing performance
of communication systems that transmit encoded data over
channels with correlated behavior over time.

We introduce a novel methodology that employs the derived
upper bounds on the probability of decoding failure to bound
the queueing performance of the system. We show how
stochastic dominance enables a tractable analysis of overall
performance. This is an important contribution of the paper as
it allows us to justify the analysis we carry on the queueing
performance based on the upper bounds on error probabilities.
These results are then compared with a performance charac-
terization based on the exact probability of decoding failure
for a Gilbert-Elliott channel.

Specifically, Section IV-C focuses on system models with
scalable arrival profiles, which are based on Poisson processes,
and the finite-state channels with memory analyzed in earlier
sections. These assumptions permit the rigorous comparison
of system performance for codes with arbitrary block lengths
and code rates. Based on the resulting characterizations, it is
possible to select the best code parameters for delay-sensitive
applications over various channels based on the error bounds in
the rare-transition regime. The methodology introduced herein
offers a new perspective on the joint queueing-coding analysis
of finite-state channels with memory, and it is supported by
numerical simulations.

II. MODELING AND EXPONENTIAL BOUNDS

We consider indecomposable finite-state channels where
state transitions are independent of the input symbols. Such
channels are often classified as fading models, and they have
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Fig. 1. The Gilbert-Elliott model is the simplest, non-trivial instantiation of a
finite-state channel with memory. State evolution over time forms a Markov
chain and the input-output relationship is governed by a state-dependent
crossover probability.

been used extensively in the literature. Adopting classical
notation [4], we employ Xn and Yn, respectively, to denote
the input and output symbols at time n. The channel state
that determines the channel law at time n is represented
by Sn−1. We typically reserve capital letters for random
variables, whereas lower case letters identify outcomes and
values. Boldface letters are used to denote length-N sequences
of random variables or outcomes. For groups of random
variables, we use the common expression P·|·(·|·) to denote
conditional joint probability mass function, and Pe,·|·(·|·) to
denote conditional joint probability of decoding error.

The conditional probability distribution governing a finite-
state channel can then be written as

PYn,Sn|Xn,Sn−1
(yn, sn|xn, sn−1)

= Pr (Yn = yn, Sn = sn|Xn = xn, Sn−1 = sn−1) .
(1)

When state transitions are independent of input symbols, this
expression admits the factorization

PYn,Sn|Xn,Sn−1
(yn, sn|xn, sn−1)

= PSn|Sn−1
(sn|sn−1)PYn|Xn,Sn−1

(yn|xn, sn−1).
(2)

Throughout, we assume that channel statistics are homoge-
neous over time and the sequence {Sn} forms a Markov chain.

The Gilbert-Elliott model is an example of a channel that
possesses the structure described above [29], [30]. This model
is governed by a two-state Markov chain, as illustrated in
Fig. 1. The state transition probability matrix for the Gilbert-
Elliott channel can be expressed as

P =

[
1− α α
β 1− β

]
, (3)

where [P]ij = Pr(Sn = j|Sn−1 = i). The state-dependent
input-output relationship induced by channel state s ∈ {1, 2}
is governed by crossover probability εs, where

Pr(xn = yn|Sn−1 = s) = 1− εs
Pr(xn 6= yn|Sn−1 = s) = εs.

(4)

We adopt a random coding scheme that employs a code en-
semble C with M = deNRe elements [4]. Variable N denotes
the block length of the code and R is the code rate in nats
per code bit. Every element in C corresponds to a sequence
of channel inputs. The input sequence associated with the kth
codeword, which we denote by X(k), is determined through

the following procedure. Suppose that Q(·) is a distribution
on the set of input symbols. Let QN (x) =

∏N
n=1Q(xn)

be the product measure induced by Q. Codeword X(k) is
selected at random according to distribution QN , and every
codeword is selected independently from other elements in C.
A message is sent to the destination by first selecting one of
the codewords, and then sequentially transmitting its entries
over the communication channel.

To begin our examination, we provide an extension to
Theorem 5.6.1 in [4, p. 135], which is itself quite general.
Since we are interested in finite-state channels with memory
in a slow transition regime, we require the ability to track
channel realizations explicitly. From an abstract perspective,
conditioning on a specific fading realization is equivalent to
altering the statistical profile of the underlying channel.

Proposition 1: Suppose that the realization of the channel
state over the duration of a codeword is given by s. Then,
for any ρ ∈ [0, 1], the probability of decoding failure at the
destination, conditioned on state sequence S = s, is upper
bounded by

Pe|S(s) ≤ e−N(E0,N (ρ,QN ,s)−ρR) (5)

where the exponent E0,N (ρ,QN , s) is equal to

−1

N
ln

N∏
n=1

∑
yn

[∑
xn

Q(xn)PYn|Xn,Sn−1
(yn|xn, sn−1)

1
1+ρ

]1+ρ
.

(6)
Proof: The condition S = s alters the probability mea-

sure governing the input-output relationship of the channel.
Applying Theorem 5.6.1 in [4] with M = deNRe, we get

Pe|S(s) ≤ eρNR
∑
y

[∑
x

QN (x)PY|X,S (y|x, s)
1

1+ρ

]1+ρ
(7)

where PY|X,S(y|x, s) denotes the conditional distribution of
receiving y given X = x and S = s.

A key insight revealed through the proof of Proposition 1 is
that E0,N (ρ,QN , s) only depends on s through its empirical
distribution, designated T (s).

Corollary 1: Let T be the empirical state distribution of a
sequence of N consecutive channel realizations. If s and s′

are two sequences such that T (s) = T (s′) = T , then we can
write E0,N (ρ,QN , s) = E0,N (ρ,QN , s

′) = E0,N (ρ,QN , T )
with some abuse of notation. The probability of decoding
failure at the destination, conditioned on S = s, is bounded
by Pe|S(s) ≤ e−N(E0,N (ρ,QN ,T )−ρR) for any sequence s with
empirical distribution T (s) = T and ρ ∈ [0, 1].

For the problem at hand, we are interested in probabilities
of the form Pe,SN |S0

(sN |s0); each of these represents the
probability of a decoding failure while keeping track of
boundary states. In view of Corollary 1, it is natural to
upper bound this quantity by partitioning the set of possible
sequences according to their empirical distributions. This is
accomplished below. In stating our results, we use T to denote
the collection of all admissible empirical channel distributions
over sequences of length N .

Proposition 2: Suppose that a codeword is transmitted over
a finite-state channel. The joint probability that decoding fails
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at the destination and SN = sN , conditioned on initial state
S0 = s0, is upper bounded as follows

Pe,SN |S0
(sN |s0)

≤
∑
T∈T

PT (S),SN |S0
(T, sN |s0) min

ρ∈[0,1]
e−N(E0,N (ρ,QN ,T )−ρR)

≤ min
ρ∈[0,1]

∑
T∈T

PT (S),SN |S0
(T, sN |s0)e−N(E0,N (ρ,QN ,T )−ρR)

(8)

where PT (S),SN |S0
(T, sN |s0) represents the probability that

T (S) = T and SN = sN , given initial state S0 = s0.
Proof: This demonstration parallels an argument found in

[4, Section 5.9]. By partitioning the set of length-N sequences
according to their empirical distributions and applying Propo-
sition 1, we obtain

Pe,SN |S0
(sN |s0)

=
∑
T∈T

∑
s:T (s)=T

Pr(S = s, SN = sN |S0 = s0)Pe|S(s)

≤
∑
T∈T

∑
s:T (s)=T

Pr(S = s, SN = sN |S0 = s0)

× min
ρ∈[0,1]

e−N(E0,N (ρ,QN ,s)−ρR).

(9)

The first inequality in (8) follows from the fact that
E0,N (ρ,QN , s) only depends on s through its empirical dis-
tribution T (s). The second inequality holds because the sum
of minimized summands is upper bounded by the minimum
of the sums.

Next, we consider a generalized Gilbert-Elliott type channel,
where the cardinality of the channel state space is S. For
this class of channels, the uniform input distribution achieves
capacity [7, Theorem 5.1]. To handle state information at the
receiver, one simply enlarges the channel output alphabet to
include the channel state. With (or without) this change, it is
easy to verify that the channel satisfies the conditions of the
cited theorem. Thus, in the remainder of the paper, we assume
that QN is the uniform input distribution.

Suppose that the sequence s is fixed and recall that sn ∈
{1, . . . ,S}. Then, by Proposition 1 we obtain

E0,N (ρ,QN , s)

= − 1

N
ln

N−1∏
n=0

1

2ρ

(
ε

1
1+ρ
sn + (1− εsn)

1
1+ρ

)1+ρ

= − 1

N

S∑
i=1

ni ln
1

2ρ

(
ε

1
1+ρ

i + (1− εi)
1

1+ρ

)1+ρ

=

S∑
i=1

ni
N
bi(ρ),

(10)

where ni is the number of visits to channel state i in sequence
s, ni/N is the fraction of time spent in state i, and

bi(ρ) = − ln
1

2ρ

(
ε

1
1+ρ

i + (1− εi)
1

1+ρ

)1+ρ

. (11)

For convenience, we assume that the error probabilities in
different states are distinct and we order the states such that
ε1 < · · · < εS ≤ 0.5, which implies b1(ρ) > · · · > bS(ρ).

An important observation from (10) is that the upper bound
in (8) can be rewritten as an expectation with respect to the
distribution of a weighted sum of the state occupancy times.
This significantly reduces the complexity of computing (8).
Suppose that random variable Ni denotes the number of visits
to channel state i over the duration of a codeword, and let

W (ρ) =
1

N

S∑
i=1

Nibi(ρ) (12)

designate the weighted sum of the normalized occupancy
times. Then, the second upper bound on the error probability
in (8) can be rewritten as

min
ρ∈[0,1]

∑
w

PW (ρ),SN |S0
(w, sN |s0)e−N(w−ρR), (13)

where PW (ρ),SN |S0
(w, sN |s0) represents the probability that

W (ρ) = w and SN = sN , given initial state S0 = s0.
The exponent in (8) is averaged with respect to the joint dis-

tribution of channel state occupations PT (S),SN |S0
(T, sN |s0).

Still, conditioned on W (ρ), the bound is statistically inde-
pendent of T (S). In fact, when the channel state information
is available at the receiver, W (ρ) is a sufficient statistic to
compute the upper bound on the probability of decoding error.
This structure improves the computational efficiency of the
bounding technique, especially when the number of channel
states is large.

For illustrative purposes, we derive the upper bounds on
Pe,SN |S0

(sN |s0) for the Gilbert-Elliott channel. Exploiting the
Markov structure of this channel, we get

Pe,SN |S0
(sN |s0)

≤ min
ρ∈[0,1]

∑
s

e−N(E0,N (ρ,QN ,s)−ρR)

× Pr(S = s, SN = sN |S0 = s0)

= min
ρ∈[0,1]

eρNR

(
es0

[
a(1, 1) a(1, 2)
a(2, 1) a(2, 2)

]N
eTsN

)
.

(14)

In this equation, ei represents the unit vector of length two
with a one in the ith position. Matrix entries are defined by
a(i, j) = [P]ij e

−bi(ρ), where the transition probability matrix
P is given in (3). In deriving (14), we use

es0

[
a(1, 1) a(1, 2)
a(2, 1) a(2, 2)

]N
eTsN

=
∑
s

N∏
n=1

Pr(Sn = sn|Sn−1 = sn−1)e−bsn−1
(ρ)

=
∑
s

(
N−1∏
n=0

1

2ρ

(
ε

1
1+ρ
sn + (1− εsn)

1
1+ρ

)1+ρ
)

×
N∏
n=1

Pr(Sn = sn|Sn−1 = sn−1)

=
∑
s

e−N(E0,N (ρ,QN ,s)) Pr(S = s, SN = sN |S0 = s0).

(15)

Inequality (14) holds for any ρ ∈ [0, 1] and, hence, the bound
can be tightened by minimizing over ρ. The bound in (14)
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is reminiscent of Gallager’s exponential bound for finite-
state channels [4, Thm. 5.9.3, p. 185] when the receiver has
perfect state information. The main difference is that Gallager
considers an ergodic regime for which this equation simplifies
using an eigenvalue characterization, whereas we are interested
in the rare-transition regime.

III. THE RARE-TRANSITION REGIME

In a traditional setting where P is kept constant, the upper
bound given in (8) can be refined using the Perron-Frobenius
theorem [4, pp. 184–185]. For the problem at hand, we study
the case where the state transition probabilities decay as 1/N .
This is a rare-transition regime where the average number of
state transitions per block converges to a constant. We define
a suitable model for this regime through the sampling of a
continuous-time Markov chain (CTMC) X (·) with infinitesi-
mal generator matrix Q.

A. Construction of Discrete-Time Markov Chains

Following conventional notation, we use Ω to designate
the sample space and we represent a generic outcome by
ω. Whenever necessary, we use superscript ω to refer to a
particular realization. For instance, X (·) denotes the CTMC
whereas Xω(·) symbolizes the sample path associated with
realization ω. In particular, Xω(·) defines a mapping from the
time interval [0,∞) to the state space {1, . . . ,S}. The need
for this notation will become manifest shortly.

Suppose X (·) is sampled at every 1/N unit of time. Then,
we can construct a continuous-time version of the sampled
chain as follows, XN (t) = X (bNtc/N). Let PN represent
the transition probability matrix of the sampled Markov chain
given by XN (n/N), n ∈ N. Matrix PN is governed by Q
through the equation [31, Thms. 2.1.1 & 2.1.2]

PN = exp (Q/N) . (16)

We emphasize that PN is also the transition probability matrix
of the Markov chain X (t) for a time interval of length 1/N ,
i.e., [PN ]ij = Pr (X (1/N) = j|X (0) = i). As before, we can
distinguish between the sampled chain XN and its realization
XωN associated with outcome ω.

We turn to a simple example. Consider a two-state Markov
process with infinitesimal generator matrix

Q =

[
−µ µ
ξ −ξ

]
µ, ξ > 0. (17)

The transition probability matrix of the sampled process then
becomes [32, Ch. 6, p. 261]

PN =
1

µ+ ξ

 ξ + µe−
ξ+µ
N µ

(
1− e−

ξ+µ
N

)
ξ
(

1− e−
ξ+µ
N

)
µ+ ξe−

ξ+µ
N

 . (18)

As seen above, jumps in the discrete chain become less likely
when N increases. This should be expected because a refined
sampling of the CTMC does not alter the character of the
underlying process. Furthermore, the roles of boundary states
are preserved, a property which is key for our analysis. The

inequalities presented in Section II apply in the context of rare
transitions as well, albeit using PN rather than a fixed P.

An important benefit of the rare-transition regime is the
existence of approximate error bounds that can be computed
efficiently. In particular, we first show that the distributions of
the occupation times for the sampled Markov chains converge
to the distribution of the channel state occupation times of
the original CTMC, as the sampling interval 1/N decreases
to zero. Second, we employ standard results pertaining to
the convergence of empirical measures to get approximate
upper bounds on the probabilities of decoding failure at
the destination. We then leverage a numerical procedure to
compute the distributions of weighted sums of channel state
occupations for the CTMC [33], [34]. Collecting these results,
we arrive at the desired characterization of channels with
memory.

B. Convergence of Measures

For every channel state i, we define the occupation times
pathwise through the integrals below,

ηωi =

∫
[0,1]

1{Xω(t)=i}dt (19)

ηωN,i =

∫
[0,1]

1{XωN (t)=i}dt =
1

N

N∑
k=1

1{XωN (k/N)=i} (20)

where 1{·} denotes the standard indicator function. Having
specified the occupation times for every outcome ω, these
equations unambiguously define random variables ηi and ηN,i.

Proposition 3: The sequence of random vectors given by
ηN = (ηN,1, . . . , ηN,S) converges almost surely to random
vector η = (η1, . . . , ηS) as N approaches infinity.

Proof: The CTMC X (t) is time-homogeneous and its
state space has finite cardinality. This process is therefore non-
explosive [31, Sec. 2.7], which implies that the number of
transitions in the interval [0, 1] is finite almost surely. We can
then write Pr (Ω′) = 1, where

Ω′ = {ω ∈ Ω|Xω(t) has finitely many jumps in [0, 1]}.

For any ω ∈ Ω′, the function Xω is bounded and continuous
almost everywhere on [0, 1]. It therefore fulfills Lebesgue’s
criterion for Riemann integrability [35, p. 323] and, as such,

ηωi =

∫
[0,1]

1{Xω(t)=i}dt

= lim
N→∞

1

N

N∑
k=1

1{XωN (k/N)=i} = lim
N→∞

ηωN,i.

(21)

Since the number of channel states is finite, this result readily
extends to vectors,

lim
N→∞

d1 (ηωN ,η
ω) = 0 ∀ω ∈ Ω′ (22)

where d1(·, ·) is the `1 distance on RS . Equivalently, we can
write

Pr
(
ω ∈ Ω

∣∣∣ lim
N→∞

d1
(
ηωN ,η

ω
)

= 0
)

= 1. (23)

That is, ηN converges to η almost surely, as desired.
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Almost sure convergence implies convergence in probability
and in distribution [36, Sec. 8.5]. Thus, from Proposition 3,
we gather that ηN converges to η in distribution, which is
sufficient for our purpose. That is, the occupation times of a
sequence of independent discrete-time Markov chains, each
generated according to PN , converge in distribution to η.

In the proof above, we make no explicit mention of the
underlying probability law on Ω. This arguments apply to
the equilibrium distribution of the Markov chain as well as
the conditional measure where the Markov process starts in
state i ∈ {1, . . . ,S} at time zero. Moreover, by extension,
these findings apply to probabilities where the final channel
state is taken into account. To distinguish between these
different scenarios, we introduce a shorthand notation for joint
probabilities,

F (r1, . . . , rS−1) = Pr (η1 ≤ r1, . . . , ηS−1 ≤ rS−1) (24)
Fij(r1, . . . , rS−1)

= Pr (η1 ≤ r1, . . . , ηS−1 ≤ rS−1, Sf = j, Si = i)
(25)

Fj|i(r1, . . . , rS−1)

= Pr (η1 ≤ r1, . . . , ηS−1 ≤ rS−1, Sf = j|Si = i) .
(26)

In our labeling, Si identifies the initial state of the channel and
Sf specifies its final value. We can define FN , FN,ij and FN,j|i
in an analogous manner. It is immediate from Proposition 3
that dFN ⇒ dF , dFN,ij ⇒ dFij , and dFN,j|i ⇒ dFj|i as N
grows to infinity, where the symbol⇒ denotes convergence in
distribution. We can readily apply the results of Proposition 3
to affine combinations of η1, . . . , ηS .

Corollary 2: Let ρ be fixed and recall the coefficients bi(ρ)
found in (11). The sequence of random variables given by
WN (ρ) =

∑S
i=1 ηN,ibi(ρ) converges in distribution to random

variable W (ρ) =
∑S
i=1 ηibi(ρ) as N approaches infinity.

The expression for W (ρ) above differs from (12) because
it reflects the notation developed for the current asymptotic
setting. Again, this result is valid for the probability laws
associated with F , Fij and Fj|i. The weighted sum W (ρ) is of
such importance in our impending discussion that we introduce
a convenient notation for its corresponding probability laws:

G(ρ)(w) = Pr(W (ρ) ≤ w), (27)

G
(ρ)
ij (w) = Pr(W (ρ) ≤ w, Si = i, Sf = j), (28)

G
(ρ)
j|i (w) = Pr(W (ρ) ≤ w, Sf = j|Si = i). (29)

Similarly, we write G
(ρ)
N , G(ρ)

N,ij and G
(ρ)
N,j|i for the positive

measures associated with WN (ρ).
Below, we seek to find approximate bounds for condi-

tional probabilities of decoding failure. Define gN (w) =
min

{
1, e−N(w−ρR)

}
and note that these functions converge

pointwise to g(w) = 1[ρR,∞)(w). A preliminary result in our
characterization is the following lemma.

Lemma 1: Consider integrals of the functions {gN (w)}.
This sequence converges to

lim
N→∞

∫
[bS(ρ),b1(ρ)]

min
{

1, e−N(w−ρR)
}
dG

(ρ)
j|i (w)

=

∫
[bS(ρ),b1(ρ)]

g dG
(ρ)
j|i .

(30)

Proof: We note that |gN (w)| ≤ 1 for all values of N
and w. Since G(ρ)

j|i is a bounded measure, then (30) holds by
Lebesgue’s Dominated Converge Theorem.

We derive asymptotic upper bounds next.
Proposition 4: Suppose that a message is transmitted over

a generalized Gilbert-Elliott type fading channel with S states
using the random coding scheme of Section II and uniform
prior distribution. Given ε > 0, there exists Nε such that

Pe,SN |S0
(j|i)

≤
∫
[bS(ρ),b1(ρ)]

min
{

1, e−N(w−ρR)
}
dG

(ρ)
j|i (w) + ε

(31)

for every N > Nε.
Proof: Let ρ ∈ (0, 1) be fixed. We know from Corollary 1

that, for channel type T , the error probability is bounded by

Pe|S(T ) ≤ e−N(E0,N (ρ,QN ,T )−ρR) = e−N(w−ρR) (32)

where w =
∑S
i=1

ni
N bi(ρ) is determined by the channel

type. We can readily tighten this bound to Pe|S(T ) ≤
min

{
1, e−N(w−ρR)

}
because individual probabilities cannot

exceed one. It is useful to point out that the expression w−ρR
is an affine, strictly increasing function of w. By taking the
expectation over W (ρ), we get

Pe,SN |S0
(j|i)

≤
∫
[bS(ρ),b1(ρ)]

min
{

1, e−N(w−ρR)
}
dG

(ρ)
N,j|i(w)

=
∑
w

PWN (ρ),SN |S0
(w, j|i) min

{
1, e−N(w−ρR)

}
.

(33)

Below, we show that

lim
N→∞

∫
[bS(ρ),b1(ρ)]

gN dG
(ρ)
N,j|i =

∫
[bS(ρ),b1(ρ)]

g dG
(ρ)
j|i . (34)

From Corollary 2, we know that the sequence of measures{
G

(ρ)
N,j|i

}
converges in distribution to G

(ρ)
j|i . For converging

sequence wN ∈ [bS(ρ), b1(ρ)] with limN→∞ wN = w 6= ρR,
we have gN (wN )→ g(w). This is pertinent because the lim-
iting function G

(ρ)
j|i (w) is continuous at ρR ∈ (bS(ρ), b1(ρ))

and, consequently, the event {w = ρR} has probability zero.
Collecting these observations, we can can apply [37, Thm. 5.5]
and thereby establish the validity of (34).

In view of this result and Lemma 1, we get

lim
N→∞

∫
[bS(ρ),b1(ρ)]

gN dG
(ρ)
N,j|i =

∫
[bS(ρ),b1(ρ)]

g dG
(ρ)
j|i

= lim
N→∞

∫
[bS(ρ),b1(ρ)]

gN dG
(ρ)
j|i .

(35)

Thus, for any ε > 0, there exists Nε such that∣∣∣∣∣
∫
[bS(ρ),b1(ρ)]

gN dG
(ρ)
N,j|i −

∫
[bS(ρ),b1(ρ)]

gN dG
(ρ)
j|i

∣∣∣∣∣ < ε (36)

for all N > Nε. Equation (31) follows.
In view of Proposition 4, we can write an approximate upper

bound for Pe,SN |S0
(j|i);

Pe,SN |S0
(j|i)

.
∫
[bS(ρ),b1(ρ)]

min
{

1, e−N(w−ρR)
}
dG

(ρ)
j|i (w).

(37)
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This approximation is justified when the code length is large
enough.

C. Methodology to Compute the Distribution of W (ρ)

Equation (37) provides a computationally efficient way to
select system parameters. One does not necessarily need to
compute a sequence of distributions for {WN (ρ)} to follow
this solution path. Rather, it is possible to accurately approxi-
mate the distribution of W (ρ) using an iterative approach. In
contrast, the standard procedure associated with (33) entails
computing G(ρ)

N,j|i explicitly for multiple values of N , a cum-
bersome task. Indeed, Proposition 5 offers a numerical method
to compute the distribution of W (ρ). This method is adapted
from [33], [34] and, as such, it is presented without a detailed
proof. In practice, the infinite sum needs to be truncated
according to an appropriate criterion. To present this result, we
need to introduce relevant notations. Let A = I+Q/σ, where
I is the identity matrix, σ ≥ maxk |Qkk|, k ∈ {1, . . . ,S},
is a constant and {Qkk} are the diagonal elements of Q
defined earlier in this section. Also, define matrix G(w) by
[G(w)]ij = G

(ρ)
j|i (w) where i, j ∈ {1, . . . ,S}.

Proposition 5: Let ρ be fixed and suppose that the channel
is initially in state Si = i. The probabilities of the events
{W (ρ) ≤ w, Sf = j|Si = i} as functions of w are continuous
almost everywhere, and they have at most S discontinuities,
with possible locations bS(ρ), . . . , b1(ρ). Furthermore, for w ∈
[bk(ρ), bk−1(ρ)) and 2 ≤ k ≤ S, we have

G(w) =

∞∑
n=0

e−σ
σn

n!

n∑
l=0

(
n

l

)
wlk(1−wk)n−lC(k)(n, l) (38)

where wk = w−bk(ρ)
bk−1(ρ)−bk(ρ) . Matrices

{
C(k)(n, l)

}
are spec-

ified by
[
C(k)(n, l)

]
cd

= C
(k)
cd (n, l) with c, d ∈ {1, . . . ,S},

and individual entries in each of these matrices are given by
the following two recurrence relations. For k ≤ c ≤ S and
1 ≤ d ≤ S,

C
(k)
cd (n, l) =

bk(ρ)− bc(ρ)

bk−1(ρ)− bc(ρ)
C

(k)
cd (n, l − 1)

+
bk−1(ρ)− bk(ρ)

bk−1(ρ)− bc(ρ)

S∑
e=1

[A]ce C
(k)
ed (n− 1, l − 1)

(39)

where 1 ≤ l ≤ n. For n ≥ 0 and k > 1, we apply the boundary
conditions C(1)

cd (n, 0) = 0 and C
(k)
cd (n, 0) = C

(k−1)
cd (n, n).

Similarly, for 1 ≤ c ≤ k − 1 and 1 ≤ d ≤ S,

C
(k)
cd (n, l) =

bc(ρ)− bk−1(ρ)

bc(ρ)− bk(ρ)
C

(k)
cd (n, l + 1)

+
bk−1(ρ)− bk(ρ)

bk(ρ)− bc(ρ)

S∑
e=1

[A]ce C
(k)
ed (n− 1, l)

(40)

where 0 ≤ l ≤ n − 1. In this case, we can write the
boundary conditions C(S)

cd (n, n) = [An]cd and C
(k)
cd (n, n) =

C
(k+1)
cd (n, 0) for n ≥ 0 and k < S.

Sketch of proof: We reiterate that this methodology
is adapted from a general technique found in [33], [34].
In paralleling the argument presented therein, the weights
b1(ρ), . . . , bS(ρ) play the role of reward rates and W (ρ)

represents the total continuous reward over the interval [0, 1).
The possible discontinuities in G

(ρ)
j|i (w) have to do with the

non-vanishing probabilities that the chain does not visit certain
states during time interval [0, 1).

The discrete-time Markov chain whose probability transition
matrix is given by A is called a uniformized chain [38], [39].
This chain can be paired to a Poisson process with rate σ
to form a continuous-time Markov chain. The resulting chain
is stochastically equivalent to X (·) and, as such, it possesses
the same probability distribution [33]. Furthermore, the matrix
PN in (16) can be written as PN = e−

σ
N I exp

(
σA
N

)
or,

alternatively,

[PN ]ij = e−
σ
N I
∞∑
k=0

1

k!

( σ
N

)k [
Ak
]
ij
. (41)

While the uniformized chain and the sampled chain are both
derived from Q, there remains an important distinction. In
the process of constructing the uniformized chain, the cor-
responding continuous-time Markov chain is scaled by the
fastest transition rate σ, so that transitions occur at the same
rate irrespective of state. In other words, the transition rate
out of every state is increased to σ, and a transition from
state k is a dummy transition to itself (or self-jump) with
probability 1 − |Qkk|/σ. The uniformized chain accounts
for all the transitions associated with a CTMC; whereas the
sampled chain with its periodic structure can overlook jumps
associated with fast transitions. This makes the uniformized
chain a suitable object in describing Proposition 5.

D. Study of Two-State Case

As a special case of Proposition 5, we turn to the situation
where S = 2. Occupation times for this simple scenario
have been studied in the past, and explicit expressions for
their distributions exist [40], [41], [42]. Yet, the distributions
provided therein only account for an initial state, and they do
not specify a final state.

For a codeword of length N , the channel inputs are x =
(x1, . . . , xN ). The input-output relationship is then governed
by PYn|Xn,Sn−1

(yn|xn, sn−1). The channel states that influ-
ence this codeword are S0, . . . , SN−1. Consequently, the num-
ber of visits to the first channel state is N1 =

∑N−1
n=0 1{Sn=1}.

In particular, N1 includes state S0, the first state in the
sequence. This is different from the model considered in [40],
[41] where one conditions on the state before the sequence
starts. In particular, the sequence excludes the initial state,
while the distributions are derived conditioned on the initial
state. We must therefore modify existing results slightly to
match our current needs.

Lemma 2: Consider a continuous-time Markov chain whose
generator matrix is given by (17). The joint distributions
governing occupation times and the final state, given an initial
state, can be written as follows. For any Lebesgue measurable
subset I of [0, 1], we have

Fη1,Sf |Si
(I, 1|1) = 1{1∈I}e

−µ +

∫
I
e−µr−ξ(1−r)

×
√

µξr

1− r
I1

(
2
√
µξr(1− r)

)
dr

(42)
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Fη1,Sf |Si
(I, 2|1)

=

∫
I
µe−µr−ξ(1−r)I0

(
2
√
µξr(1− r)

)
dr

(43)

Fη1,Sf |Si
(I, 1|2)

=

∫
I
ξe−µr−ξ(1−r)I0

(
2
√
µξr(1− r)

)
dr

(44)

Fη1,Sf |Si
(I, 2|2) = 1{0∈I}e

−ξ +

∫
I
e−µr−ξ(1−r)

×
√
µξ(1− r)

r
I1

(
2
√
µξr(1− r)

)
dr

(45)

where I0(·) and I1(·) represent modified Bessel functions of
the first kind [41, Lem. 2, p. 386].

Proof: See appendix.
The corresponding expressions for the sampled chain are

presented in the following Lemma. In reporting these results,
we use the Gaussian hypergeometric function, which is defined
by [41, Lem. 1, p. 383]

2F1(m̃, ñ; õ;ψ) =

∞∑
k=0

(m̃)k(ñ)k
(õ)n

ψk

k!
(46)

where (m̃)k is the rising Pochhammer symbol: (m̃)0 = 1 and
(m̃)k = m̃(m̃+ 1) · · · (m̃+ k − 1) for k > 0.

Lemma 3: Consider a two-state channel whose transition
probability matrix is given by (3). Assume that the number of
visits to each state is recorded for a period spanning N con-
secutive channel realizations. The joint distributions governing
the channel type and its final state, conditioned on the initial
state, can be written in terms of the Gaussian hypergeometric
function. These distributions for m = 1, . . . , N − 1 are

PN1,SN |S0
(m, 1|1) = (1− α)m(1− β)N−m

×
(
2F1(−N +m,−m+ 1; 1;ψ)

− 2F1(−N +m+ 1,−m+ 1; 1;ψ)
) (47)

PN1,SN |S0
(m, 2|1) = α(1− α)m−1(1− β)N−m

× 2F1(−N +m+ 1,−m+ 1; 1;ψ)
(48)

PN1,SN |S0
(m, 1|2) = (1− α)mβ(1− β)N−m−1

× 2F1(−N +m+ 1,−m+ 1; 1;ψ)
(49)

PN1,SN |S0
(m, 2|2) = (1− α)m(1− β)N−m

×
(
2F1(−N +m+ 1,−m; 1;ψ)

− 2F1(−N +m+ 1,−m+ 1; 1;ψ)
) (50)

where N1 is the number of visits to the first state, and
ψ = αβ

(1−α)(1−β) . Special consideration must be given to
extremal cases: PN1,SN |S0

(0, ·|1) = PN1,SN |S0
(N, ·|2) = 0,

PN1,SN |S0
(0, 2|2) = (1 − β)N , and PN1,SN |S0

(N, 1|1) =
(1− α)N .

Proof: See appendix.
We can relate these two results through Proposition 3 and

the definition of PN in (18). Let α and β be the constants
defined in Lemma 3, and consider the assignment

α =
µ

µ+ ξ

(
1− e−

ξ+µ
N

)
β =

ξ

µ+ ξ

(
1− e−

ξ+µ
N

)
. (51)

Then, the discrete distributions specified above converge to the
occupation times described in Lemma 2, under the asymptotic

scaling N1/N → η as N grows unbounded. Two of the
limiting measures in Lemma 2 are not absolutely continuous
with respect to the Lebesgue measure; nevertheless, these
distributions are well-defined positive measures [36, Chap. 8].

Using the limiting distributions in Lemma 2, one can
compute the approximate upper bound found in (37) for
the two-state case. We stress that, for this simple channel,
W (ρ) = (b1(ρ) − b2(ρ))η + b2(ρ) is an affine function of η.
Hence, the distribution of W (ρ) can be derived in terms of η.
For this simple case, one can compute the approximate bound
using the empirical distribution of the state occupancies,

Pe,SN |S0
(j|i)

.
∫
[0,1]

min
{

1, e−N((b1(ρ)−b2(ρ))r+b2(ρ)−ρR)
}

× dFη,Sf |Si
(r, j|i).

(52)

As the number of states increases, dealing with the joint
distribution of the state occupation times and integrating
over multiple variables is an increasingly intricate task. This
difficulty is bypassed when we use the distribution of the
weighted sum of occupation times since, in this latter case,
we are dealing with a single random variable as opposed to a
random vector.

In general, getting the distributions of the occupation times
for the discrete chains is not needed to apply the result
of Proposition 4. However, for the two-state channel, the
distributions are available for both the continuous-time and
the sampled chains. It is then instructive to compute the
exact upper bound in (33) using the distributions given by
Lemma 3, and compare it to the approximate bound presented
in (52). Numerical results for this comparison are presented
in Section V, offering supporting evidence for our proposed
methodology. We note that, even for the simple two-state
case, computing the approximate upper bound in (52) is
considerably more efficient than calculating (33). As we will
see in Section V, the price to pay for this computational
efficiency is a small loss in accuracy.

From an engineering point of view, we are interested in
cases where N is dictated by the code length of a practical
coding scheme. The approximate upper bound can be used to
perform a quick survey of good parameters. Then if needed,
the exact expression based on the hypergeometric function
can be employed for fine tuning locally. As a final note on
this topic, we emphasize that these upper bounds can be
tightened by optimizing over ρ ∈ [0, 1]. This task entails
repeated computations of the bounds, which partly explains
our concerns with computational efficiency.

IV. ERROR ANALYSIS AND QUEUE CHARACTERIZATION

The primary goal of this section is to link the error analysis
we have developed so far, to the queueing characterization
of delay-sensitive communication systems. This gives rise to
a unified framework, which enables a joint assessment of
the coding and queueing performance of the system in the
rare-transition regime. Applications of stochastic dominance
are common in queueing theory. This paper presents a novel
methodology which connects the coding bounds and queueing



9

performance through an application of stochastic dominance.
We note that developing upper bounds on error probability that
capture the dependencies on the initial and final channel states
is crucial to enable the present queueing analysis. Besides, the
computational efficiency of the developed bounds results in
faster performance evaluation of the queueing model.

In our framework, the system dynamics and fading process,
including channel correlation, are treated from a symbol-
level perspective, while a rigorous analysis is conducted at
the block level. That is, the block-level behavior is induced
from the channel parameters in a consistent fashion. This
enables the fair comparison of the queueing performance of
communication systems with different block lengths and code
rates, and then finding the best coding parameters.

One of the challenges in dealing with block codes over
finite-state channels with memory is the statistical dependence
between decoding events that are closely spaced in time. For
instance, if the underlying channel forms a Markov chain,
then the decoding process becomes a hidden Markov process
as block codes operate over series of channel states. This
often entails a difficult analysis of the queue behavior at the
source. To make this problem tractable, we augment the state
space by appending the value of the channel at the onset of a
codeword to the queue length. Under this state augmentation,
the coded system retains the Markov property, which facilitates
the characterization of the queueing behavior at the transmitter.

We review the necessary mathematical machinery to handle
error events for the finite-state channels with memory, as
originally introduced by Gilbert [29] and Elliott [30]. We use
these models to assess how channel dependencies over time
can affect overall performance. A significant benefit in dealing
with the Gilbert-Elliott channel model is its tractability. The
remainder of this article is devoted to the analysis of error
probability and the queueing behavior of systems built around
the two-state channel. Sections IV-A and IV-B are dedicated
to exact derivation of probabilities of detected and undetected
decoding failure. This is an intermediate step to characterize
system performance, and it allows for fair evaluation of the
proposed bounding technique. In Section IV-C, we provide
performance analysis of the system from the queueing point
of view. In Section IV-D, we show how to bound queueing
performance by using upper bounds on the probability of
decoding failure, instead of the exact expressions.

A. Exact Probabilities of Decoding Failure
It is possible to compute exact probabilities of decoding fail-

ure under various decision schemes for the two-state Gilbert-
Elliott channel. Consequently, in this case, we can assess how
close the bounds and the true probabilities of error are from
one another. It may be impractical to compute exact probabil-
ities of error for more elaborate channels. Even for Gilbert-
Elliott type channels with more than two states, deriving and
computing exact expressions for the probability of decoding
failure rapidly becomes intractable. In such situations, the use
of upper bounds for performance evaluation may be inevitable.

In [43], the authors study data transmission over a Gilbert-
Elliott channel using random coding. Two different decod-
ing schemes are considered: a minimum-distance decoder

and a maximum-likelihood decision rule. For the sake of
completeness, we briefly review these results. When channel
state information is available at the destination, the empirical
distribution of the channel sequence provides enough informa-
tion to determine the probability of decoding failure. Using
the measure on N1 and the corresponding conditional error
probabilities, one can average over all possible types to get
the probability of decoding failure,

Pe,SN |S0
(sN |s0) =

∑
T∈T

Pe|T (S)(T )

× Pr(T (S) = T, SN = sN |S0 = s0).

(53)

The conditional probability of decoding failure, given type
T = (n1, N −n1), is examined further below. The probability
distributions governing different channel types can be found
in Lemma 3.

Consider the channel realization over the span of a code-
word. Suppose Xi and Yi represent the subvectors of X and
Y corresponding to time instants when the channel is in state
i. We denote the number of errors that occur in each state
using random variables E1 and E2, where Ei = dH(Xi,Yi)
and dH(·, ·) is the Hamming distance. The conditional error
probabilities can then be written as

Pe|T (S)(T ) =

n1∑
e1=0

n2∑
e2=0

Pe|T (S),E1,E2
(T, e1, e2)

× PE1,E2|T (S)(e1, e2|T )

(54)

where n2 = N − n1. Given the channel type, the numbers
of errors in the first and second states are independent,
PE1,E2|T (S)(e1, e2|T ) = PE1|T (S)(e1|T )PE2|T (S)(e2|T ). Fur-
thermore, E1 and E2 have binomial distributions

PEi|T (S)(ei|T ) = PEi|Ni(ei|ni)

=

(
ni
ei

)
εeii (1− εi)ni−ei .

(55)

This mathematical structure leads to the following result.
Theorem 1: When ties are treated as errors, the probability

of decoding failure for a length-N uniform random code with
M codewords, conditioned on the number of symbol errors in
each state and the channel state type, is given by

Pe|T (S),E1,E2
(T, e1, e2)

= 1−

1− 2−N
∑

(ẽ1,ẽ2)∈M(γe1+e2)

(
n1
ẽ1

)(
n2
ẽ2

)M−1

(56)

where M(d) is the set of pairs (ẽ1, ẽ2) ∈ {0, . . . , N}2
that satisfy γẽ1 + ẽ2 ≤ d. This expression holds with
γ = ln ε1−ln(1−ε1)

ln ε2−ln(1−ε2) for the maximum-likelihood decision rule,
and with γ = 1 for minimum-distance decoding.

Proof: See appendix and proof in [43].
If channel state information is available at the receiver, then

random codes paired with a maximum-likelihood decoding
rule form a permutation invariant scheme. The performance
is then determined by the number of symbol errors in each
state within a codeword, and not by their order or locations.
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B. Undetected Errors

A serious matter with communication systems is the pres-
ence of undetected decoding failures. In the current setting,
this occurs when the receiver uniquely decodes to the wrong
codeword. For delay-sensitive applications, this problem is
especially important because recovery procedures can lead to
undue delay. To address this issue, we apply techniques that
help control the probability of admitting erroneous codewords
[44], [45]. This safeguard, in turn, leads to slight modifications
to the performance analysis presented above.

1) The Exact Approach: In [43], the authors show that
the probability of decoding failure (including detected errors,
undetected errors, and ties) is given by the equations (53)–(55)
and substituting

Pe|T (S),E1,E2
(T, e1, e2)

= 1−

1− 2−N
∑

(ẽ1,ẽ2)∈M(γe1+e2+ν)

(
n1
ẽ1

)(
n2
ẽ2

)M−1

(57)

where ν is a non-negative parameter that specifies the size of
the safety margin for undetected errors. The joint probability of
undetected error with ending state SN , conditioned on starting
in state S0, is Pue,SN |S0

(sN |s0). It can be upper bounded by

P̄ue,SN |S0
(sN |s0) =

∑
T∈T

P̄ue|T (S)(T )

× Pr(T (S) = T, SN = sN |S0 = s0)

(58)

where the bounded component in the summand is given by

P̄ue|T (S)(T ) =

n1∑
e1=0

n2∑
e2=0

P̄ue|T (S),E1,E2
(T, e1, e2)

× PE1,E2|T (S)(e1, e2|T )

(59)

and its associated term is

P̄ue|T (S),E1,E2
(T, e1, e2)

= 1−

1− 2−N
∑

(ẽ1,ẽ2)∈M(γe1+e2−ν)

(
n1
ẽ1

)(
n2
ẽ2

)M−1

.

(60)

Since the probability of undetected error is typically much
smaller than that of detected error, one can upper bound
the probability of detected error by Pe,SN |S0

(sN |s0) with
a negligible penalty. Additional details for this proof are
available in Section C of the appendix.

2) Exponential Bound: With slight modifications to the
derived exponential upper bound, one can get a similar bound
on the probability of undetected error.

Packet Length L

1 2 · · · J − 2 J − 1 J

Zero Padded

to R̃N Bits

Segment of

R̃N Bits
R̃N Information Bits

and Redundancy

Block Length N
Coding
Scheme

Fig. 2. Each packet is divided into J segments, and a channel encoding
scheme is employed to encode each segment.

Lemma 4: The exponential upper bounds on Pe,SN |S0
and

P̄ue,SN |S0
can be written as

P̃ue,SN |S0
(j|i)

= min
0≤ρ≤1

N∑
n1=0

min
{

1, e−N(E0,N (ρ,QN ,n1)−ρR− ρτ
1+ρ )

}
× PN1,SN |S0

(n1, j|i)

≈ min
0≤ρ≤1

∫
[0,1]

min
{

1, e−N((b1(ρ)−b2(ρ))r+b2(ρ)−ρR− ρτ
1+ρ )

}
× dFη,Sf |Si

(r, j|i)
(61)

P̃e,SN |S0
(j|i)

= min
0≤ρ≤1

N∑
n1=0

min
{

1, e−N(E0,N (ρ,QN ,n1)−ρR+ τ
1+ρ )

}
× PN1,SN |S0

(n1, j|i)

≈ min
0≤ρ≤1

∫
[0,1]

min
{

1, e−N((b1(ρ)−b2(ρ))r+b2(ρ)−ρR+ τ
1+ρ )

}
× dFη,Sf |Si

(r, j|i)
(62)

where τ ≥ 0 controls the tradeoff between detected and
undetected errors and is used to decrease the incidence of
undetected errors, in a manner similar to ν for the exact case.

Proof: One can obtain these expressions by paralleling
the approach found in [44], [45]. See appendix.

The rare-transition regime, the performance bounds, and the
approximation methodologies proposed in this article have a
wide range of applications. The next two sections are dedi-
cated to the potential implications of the proposed bounding
techniques in terms of queueing theory.

C. Queueing Model

Consider a queueing system in which packets are generated
at the source according to a Poisson process with arrival
rate λ, measured in packets per channel use. The number of
bits per packet forms a sequence of independent geometric
random variables, each with parameter % ∈ (0, 1). On arrival,
a packet is divided into segments of size RN/ ln 2 bits, where
N denotes the block length and R is the code rate in nats per
code bit, as defined in Section II (see Fig. 2). The number
of information bits per segment, RN/ ln 2, is assumed to be
an integer. Since units of rate differ between the exponential
upper bounds and conventional coding theory, we use notation
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Fig. 3. Coded segments are transmitted over the unreliable communication
link. A data packet is discarded from the transmit buffer only when all its
codewords are successfully received at the destination.

R̃ = R/ln 2 to convert rates from nats to bits. The total number
of segments associated with a packet of length L is given by
J =

⌈
L/R̃N

⌉
. As before, a random coding scheme is used

to protect the data while it is transmitted over the correlated
channel.

On the receiving end, one must successfully decode all J
codewords to recover the corresponding packet. Once this is
achieved, this packet is discarded from the queue (see Fig. 3).
We note that random variable J has a geometric distribution
with Pr(J = j) = (1 − %r)

j−1%r, where j ≥ 1 and %r =

1 − (1 − %)R̃N . Consequently, the number of coded blocks
per data packet possesses the memoryless property, a highly
desirable attribute for the purpose of analysis.

This communication system operates on top of the finite-
state channel discussed earlier. The resulting framework allows
us to rigorously characterize the queueing performance while
varying the block length and the code rate. The scaling
property of the Poisson packet arrivals with geometric packet
lengths is crucial in enabling the fair comparison of systems
with different code parameters. In particular, the arrival pro-
cess is defined at the symbol level and we account for channel
dependence within and across codewords. This last observation
is especially pertinent for queueing systems, as correlation in
service is known to exacerbate the distribution of a queue.

In the current framework, a data packet is discarded from
the transmit buffer if and only if the destination acknowledges
reception of the latest codeword and this codeword contains
the last parcel of information corresponding to the head
packet. Packet departures are then determined by the channel
realizations and the coding scheme. The code rate R̃ has a
major impact on performance. Generally, a lower code rate
will have a smaller probability of decoding failure. However,
a lower rate also implies more segments to complete the
transmission of one data packet. Thus, for a fixed channel
profile, we can vary the block length and code rate to find
optimal system parameters. This natural tradeoff reflects the
tension between the probability of a successful transmission
and the size of its payload.

Let Qs denote the number of data packets waiting in the
transmitter queue after s codeword transmission intervals.
The channel state at the same time instant is represented by
CsN+1. Notice that the channel state evolves more rapidly than
events taking place in the queue. This explains the discrepancy
between the indices. Based on these quantities, it is possible

to define a Markov chain Us = (CsN+1, Qs) that captures the
joint evolution of the queue and the channel over time. The
ensuing transition probabilities from Us to Us+1 are equal to

Pr(Us+1 = (d, qs+1)|Us = (c, qs))

=

N∑
n1=0

PQs+1|N1,Qs(qs+1|n1, qs)

× PN1,C(s+1)N+1|CsN+1
(n1, d|c),

(63)

where the components of the summands are given by Lemma 3
and by

PQs+1|N1,Qs (qs+1|n1, qs)

=

n1∑
e1=0

n2∑
e2=0

PQs+1,E1,E2|N1,Qs(qs+1, e1, e2|n1, qs)

=

n1∑
e1=0

n2∑
e2=0

PQs+1|E1,E2,N1,Qs(qs+1|e1, e2, n1, qs)

× PE1,E2|N1,Qs(e1, e2|n1, qs)

=

n1∑
e1=0

n2∑
e2=0

(
n1
e1

)(
n2
e2

)
εe11 (1− ε1)n1−e1εe22 (1− ε2)n2−e2

× PQs+1|E1,E2,N1,Qs(qs+1|e1, e2, n1, qs).
(64)

Suppose that the number of packets in the queue is Qs = qs,
where qs > 0. Then, admissible values for Qs+1 are restricted
to the set {qs − 1, qs, qs + 1, . . .}. The transition probabilities
for qs > 0 and i ≥ 0 are given by

PQs+1|E1,E2,N1,Qs(qs + i|e1, e2, n1, qs)
= aiPe|E1,E2,N1

(e1, e2, n1)

+ ai+1(1− Pe|E1,E2,N1
(e1, e2, n1))%r

+ ai(1− Pe|E1,E2,N1
(e1, e2, n1))(1− %r)

(65)

and the probability of the queue decreasing is

PQs+1|E1,E2,N1,Qs(qs − 1|e1, e2, n1, qs)
= a0

(
1− Pe|E1,E2,N1

(e1, e2, n1)
)
%r.

(66)

The queue can only become smaller when there are no
arrivals, a codeword is successfully received at the destination,
and the decoded codeword contains the last piece of data
associated with a packet. Above, Pe|E1,E2,N1

(e1, e2, n1) is the
conditional probability of decoding failure which appears in
(57). Variable ai denotes the probability that i packets arrive
within the span of a codeword transmission. Since arrivals
form a Poisson process, we have ai = (λN)i

i! e−λN for i ≥ 0.
When the queue is empty, (65) applies for cases where i ≥ 1.
However, in this case, the queue length cannot decrease and
the conditional transition probability for i = 0 amounts to

PQs+1|E1,E2,N1,Qs(0|e1, e2, n1, 0)

= a0 + a1
(
1− Pe|E1,E2,N1

(e1, e2, n1)
)
%r.

(67)

The overall profile of this system can be categorized as
an M/G/1-type queue. The repetitive structure enables us to
employ the matrix geometric method to compute the charac-
teristics of this system and subsequently obtain its stationary
distribution [46], [43].
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D. Stochastic Dominance

When the number of channel states is large, it may be
impractical to employ exact probabilities of decoding failure.
Even for memoryless channels, finding explicit expressions
for different encoding/decoding schemes can be difficult. In
the face of such a challenge, it is customary to turn to upper
bounds on the probabilities of decoding failure to provide
performance guarantees. One can employ such upper bounds
to assess the queueing performance of the system through
stochastic dominance.

The evolution of the queue length is governed by the
Lindley equation [47, pp. 92–97],

Qs+1 = (Qs +As −Ds)
+

= max{0, Qs +As −Ds} (68)

where As is the number of arrivals that occurred during block
interval s, and Ds is an indicator function for the potential
completion of a packet transmission within the same time
period. In this queueing model, the only inherent effect of
replacing the probability of decoding failure by an upper
bound is a potential reduction in the value of Ds. Using an
upper bound on the failure probability naturally gives rise to a
new random process Q̃s defined by Q̃s+1 =

(
Q̃s+As−D̃s

)+
,

where D̃s is drawn according to the distribution implied by
the upper bound. Defining Markov chain Ũs = (CsN+1, Q̃s)
and paralleling our previous arguments for the evolution of
the system, one can write

Pr
(
Ũs+1 = (d, qs + i)|Ũs = (c, qs)

)
= aiP̃e,SN |S0

(d|c) + ai

(
1− P̃e,SN |S0

(d|c)
)

(1− %r)

+ ai+1

(
1− P̃e,SN |S0

(d|c)
)
%r

(69)

Pr
(
Ũs+1 = (d, qs − 1)|Ũs = (c, qs)

)
= a0(1− P̃e,SN |S0

(d|c))%r
(70)

where i ≥ 0 and P̃e,SN |S0
(j|i) is given by (62).

We note that Ds and D̃s are Bernoulli random variables
with Pr(Ds = 1) ≥ Pr

(
D̃s = 1

)
at every time instant s.

It follows that the process Qs is stochastically dominated by
Q̃s, provided that the two queues are equal at the onset of the
process [48], [49]. In addition, when the Markov chains Us =
(CsN+1, Qs) and Ũs = (CsN+1, Q̃s) are positive recurrent,
the corresponding queueing processes Qs and Q̃s are stable.
Then, for any integer q, we have Pr(Qs > q) ≤ Pr

(
Q̃s > q

)
and, in the limit, we obtain

Pr(Q > q) = lim
s→∞

Pr(Qs > q)

≤ lim
s→∞

Pr
(
Q̃s > q

)
= Pr

(
Q̃ > q

)
.

(71)

That is, Q is stochastically dominated by Q̃, where Q and
Q̃ denote stationary distributions. Intuitively, when comparing
two queueing systems with a same arrival process, a same
underlying channel, and a same code generator, increasing the
probability of failure can only result in fewer departures and
exacerbate the size of the queue. This observation holds in
some generality and can be employed when the exact decoding
error probabilities are not known or difficult to compute.
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Fig. 4. Comparison of the approximate upper bound (37) with the exact
bound (14) in the rare-transition regime with [PN

N ]12 ≈ 4 and [PN
N ]21 ≈ 6.

Obtaining exact error probabilities can be computationally
challenging for block lengths greater than 150, even for the
two-state Gilbert-Elliott channel. Our approach enables one to
provide performance guarantees for a queueing system using
bounds on the probabilities of decoding failure.

V. NUMERICAL RESULTS

In this section, we present numerical results for probabilities
of decoding error and we compare them to the derived upper
bounds. We also evaluate queueing performance using the
exact error probabilities and their upper bounds derived in the
rare-transition regime.

A. Comparison of Exponential Upper Bounds

We consider a communication system that transmits data
over a Gilbert-Elliott channel. We assume the setting of the
SNR threshold for transitions between the first and second
states are such that the cross-over probabilities of the Gilbert-
Elliott channel are ε1 = 0.01 and ε2 = 0.1. Figure 4 shows the
approximate upper bounds of (37) as functions of block length
and code rate, and compares them to the standard Gallager-
type bounds of (14). Each curve shows the value of the bound
averaged over all possible state transitions. Although the block
lengths are relatively short, the approximate bounds are very
close to the standard Gallager-type bounds. The difference
becomes negligible as N grows larger.

In Fig. 5, we plot the probabilities of decoding failure for
the maximum-likelihood (ML) and minimum-distance (MD)
decoders given by (53)–(56), against the bounds provided in
(37). As anticipated, the maximum-likelihood decision rule
outperforms the minimum distance decoder. For fixed N , there
is a roughly constant ratio between the approximate upper
bounds and the exact probabilities of error under maximum-
likelihood decoding. This occurs because, for rates close to
capacity, the primary source of error in Gallager-type bounds
is the loss associated with the prefactor [50], [51]. The figure
only features short block lengths, as it is impractical to
compute exact performance for long lengths.
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Fig. 5. Comparison of the approximate upper bound (37) with the exact
probabilities of decoding failure under ML and MD decoding for [PN ]12 =
0.0533 and [PN ]21 = 0.08.

B. Evaluation of Queueing Performance

We evaluate the performance of our proposed methodology
using traffic parameters roughly selected based on an EVDO
system, a 3G component of CDMA2000 [52]. This system
offers an uplink sector capacity of 500 Kb/s with 16 active
users per sector [53]. For systems with more users and lower
per-user rates, this is somewhat optimistic. Accordingly, we
choose a total uplink rate of 460 Kb/s per sector; this gives a
rate of Rb = 28.75 Kb/s for each active user.

The enhanced variable rate codec used by CDMA2000
systems, features four distinct frame types corresponding to
different bit-rates: full rate gives 171 bits, 1/2 rate gives
80 bits, 1/4 rate gives 40 bits, and 1/8 rate gives 16
bits. Hereafter, we adopt the rough estimates of the relative
frequencies for the speech coder states published in [52].
Moreover, as the header size for voice packets are usually very
large relative to the voice payload, we assume that ROHC
compression is employed to reduce overhead to four bytes.
Under these parameters, the average size of a voice packet
becomes 1/% =

∑
i hi(li + overhead) = 88.55 bits, where hi

is the relative frequency of state i and li denotes the frame
size for the same state. Throughout the numerical evaluation,
packets are assumed to arrive according to a Poisson process
with λ = 50 packets per second (on average, packets are
generated every 20 msec) and we receive an average of
50/Rb packets/channel use. The state transition probabilities
are considered to be α = 0.0533 and β = 0.08, which roughly
result in having an average of 4 and 6 transitions per block.
Shannon capacity for this system when the channel state is
known at the receiver is equal to 0.764 bits per channel use.

Increasing code rate R̃ for a fixed block length decreases re-
dundancy and therefore reduces the error-correcting capability
of the code. Thus, the probability of decoding failure becomes
larger. At the same time, changes in code rate affect %r, the
probability with which a codeword contains the last parcel
of information of a packet. As code rate varies, these two
phenomena influence the stationary distribution of the Markov
system in opposite ways.

The choice of a Poisson arrival process allows us to make
fair comparisons between codes with different block lengths.
The rate λ in packets per channel use is fixed, and arrivals in
the queue correspond to the number of packets produced by
the source during the transmission time of one codeword. The
marginal distribution of the sampled process is Poisson with
arrival rate λN , in packets per codeword. This formulation is
new, and it bridges coding decision to queueing behavior in a
rigorous manner.

To examine overall system performance, we assume the
existence of a genie which informs the receiver when an
undetected decoding error occurs; this approach is standard
when it comes to analysis. One can picture two systems
operating side by side, one with the genie which informs the
occurrence of undetected errors, and one without. The systems
are performing the same, until there is an undetected error at
which point, the former system reports it and immediately
retransmits the corresponding information segment. The latter
system does not report the occurrence of undetected error
and continues until it gets into the end of the packet when
the packet CRC does not check and it retransmits the entire
packet. The difference between the two systems can be made
arbitrarily small by reducing the probability of undetected
error. We required the system to feature a very low probability
of undetected error, less than 10−5 by a proper choice of the
safety margin.

Given this framework, a primary goal is to minimize the
tail probability of the queue over all admissible values of N ,
R̃, and τ or ν. To perform this task using the approximate
exponential bound, we first evaluate the bound on undetected
error probabilities for different rates and for τ = 0 in (61).
Then, for rates with high probability of undetected error, we
increase τ so that the bound on probability of undetected
error is reduced. Recall that this increases the probability of
decoding failure, as seen in (62). Since we are also interested
in minimizing the latter probability, we increase τ until the
system meets the error-detecting condition and then stop. The
values of N and R̃ for which this procedure gives poor
performance are ignored. A similar approach is used for
system evaluation with exact error probabilities by changing
the value of ν in (57) and (60).

Figure 6 shows the approximate bound on probability of
the queue exceeding a threshold as a function of system
parameters. The constraint on the number of packets in the
queue is set to five, which reflects our emphasis on delay-
sensitive communication. We have chosen τ in (61)–(62) such
that maxi,j P̃ue,SN |S0

(j|i) remains below 10−5. Code rate
varies from 0.25 to 0.75, with a step size of 0.05. Each curve
corresponds to a different block length. As seen on the graph,
there is a natural tradeoff between the probability of decoding
failure and the payload per codeword. For a fixed block length,
neither the smallest segment length nor the largest one delivers
optimal performance. Block length must be selected carefully;
longer codewords do not necessarily yield better queueing
performance as they may result in large decoding delays. As
such, the tail probability has a minimum over all rates and
block lengths. Therefore, there are interior optimum points
for both N and R̃. We see in Fig. 6 that the optimum code
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Fig. 7. Exact probability of queue exceeding a threshold as functions
of block length N and code rate R̃. System parameters meet constraint
maxi,j P̄ue,SN |S0

(j|i) ≤ 10−5.

parameters are close to (N, R̃) = (170, 0.5). For this particular
set of code parameters, we have τ = 0.048.

Figure 7 offers similar plots using the exact failure proba-
bility. Again, the optimum code parameters are near (N, R̃) =
(170, 0.5). In this case, ν = 8 is the smallest value of ν
that keeps maxi,j P̄ue,SN |S0

(j|i) below the 10−5 threshold.
In this scenario, performance evaluation based on the bound
gives very good estimates for optimum coding parameters and
overall system performance. Not only does the approximate
bound give a good estimate of performance, it accurately
predicts ideal system parameters for code block as small as
125. Since the approximate bounds are slightly pessimistic,
they produce conservative estimates of overall performance.
Empirically, the systems perform better than predicted by the
approximate error bounds.

VI. CONCLUSION

The rare-transition regime is a methodology to charac-
terize communication systems where the block length is
of the same order or smaller than the coherence time of
the channel. This mode of operation is common in many
practical implementations. This fact serves as a motivation
for the proposed framework. In this article, we derived an
approximate upper bound specifically tailored to the rare-
transition regime to estimate the probability of decoding error
over finite-state channels. This methodology accounts for both
dependence within and across codewords. Furthermore, the
proposed bound is numerically efficient to compute. It can be
employed for parameter selection and performance analysis in
communication links subject to queueing constraints.

We provided supporting evidence for the accuracy of the
bounding technique by deriving exact expressions for the
Gilbert-Elliott channel. Both maximum-likelihood decoding
and a minimum-distance decision rule are considered. A
numerical comparison between exact and approximate results
validates our approach, showcasing the predictive power of
the approximate bounding techniques. The numerical study
focused on a two-state Markov channel with state information
available at the destination. This methodology extends to
performance criteria based on queueing behavior as well.

We described a practical method to choose block length and
code rate as to minimize the probability that the transmit buffer
exceeds a prescribed threshold. This is especially pertinent
for communication links that support delay-sensitive traffic,
yet it applies to general data stream as delay is known to
negatively affect the performance of congestion control proto-
cols. The queueing analysis based on upper bounds on error
probability was shown to provide adequate estimates of system
performance and optimum code parameters. Numerical studies
suggest that, for fixed conditions, optimal system parameters
are essentially unaffected by small variations in the buffer
overflow threshold. The methodology and results can be gen-
eralized to more intricate channels with memory. In addition,
the performance characterization of random codes over finite-
state channels may extend to more practical schemes, such as
iterative decoding of low density parity-check (LDPC) codes.
Possible avenues of future research include the analysis of the
rare-transition regime in the absence of side information. Our
conjecture is that in the limiting case, the channel sojourn time
in each state is long enough for the receiver to estimate the
state. For instance, for a channel with high correlation, patterns
of errors with the same number of errors within a block are
not equally likely. In fact, the system is more prone to burst of
errors when the channel quality is poor. In other words, long
channel memory enables the receiver to predict the channel
quality. Hence, one might expect similar performance when
the state information is not provided at the receiver in the
rare-transition regime.

APPENDIX

A. Proof of Lemma 2

Distributions of the occupancy times for two-state discrete-
time and continuous-time Markov chains have been studied
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previously. These distributions can be derived using bivariate
generating functions and two-dimensional Laplace transforms,
respectively [41]. Herein, we show how to adapt these ap-
proaches to derive the conditional distributions needed in our
work.

The matrix of two-dimensional Laplace transforms for the
distribution of the time spent in the first state over the time
interval [0, 1] is given by[

−
(
Q−

[
θ 0
0 0

]
− φI

)]−1
. (72)

For example, the first entry in the matrix is equal to 1
u +

µξ
u(uv−µξ) , where u = φ + θ + µ and v = φ + ξ. The
inverse two-dimensional Laplace transform of this entry gives
the conditional distribution fη1,Sf |Si

(·, 1|1). After this step,
Lemma 2 in [41] can be employed to get the desired format
in terms of modified Bessel functions.

B. Proof of Lemma 3
Replicating existing results about state transitions in Markov

models [41] and adapting them to the present scenario, we
gather that

PN1|S0
(m|1) = (1− α)m−1(1− β)N−m×[ ∞∑

k=0

(
m− 1

k

)(
N −m− 1

k − 1

)(
α

1− β

)k (
β

1− α

)k
+

∞∑
k=0

(
m− 1

k

)(
N −m− 1

k

)(
α

1− β

)k+1(
β

1− α

)k ]
.

(73)

Above, the summands are split into two sums according
to whether the total number of transitions is even or odd.
The upper and lower limits on k can be set to zero and
infinity, respectively, because the binomial coefficients will
be zero for all inadmissible terms. From the definition of the
hypergeometric function 2F1(·, ·; ·; ·), see e.g. [41, Lem. 1,
p. 383], we gather that
∞∑
k=0

(
m− 1

k

)(
N −m− 1

k

)(
α

1− β

)k+1(
β

1− α

)k
=

(
α

1− β

)
2F1(−N +m+ 1,−m+ 1; 1;ψ)

(74)

where ψ = αβ
(1−β)(1−α) . These results lead to

PN1,SN |S0
(m, 2|1) = α(1− α)m−1(1− β)N−m

× 2F1(−N +m+ 1,−m+ 1; 1;ψ)
(75)

for m = 1, . . . , N − 1. When m = 0 and m = N ,
this conditional probability is equal to zero. Likewise, using
the recursive formula for binomial coefficients

(
N−m−1
k−1

)
=(

N−m
k

)
−
(
N−m−1

k

)
, we arrive at

PN1,SN |S0
(m, 1|1) = (1− α)m(1− β)N−m

×
(
2F1(−N +m,−m+ 1; 1;ψ)

− 2F1(−N +m+ 1,−m+ 1; 1;ψ)
) (76)

for m = 1, . . . , N − 1. Moreover, PN1,SN |S0
(0, 1|1) = 0 and

PN1,SN |S0
(N, 1|1) = (1 − α)N . The remaining conditional

probabilities can be derived in a similar manner.

C. Details on Section IV-B

1) The Exact Approach: First, we revisit the ML decoding
rule and error probability ]for the Gilbert-Elliott channel when
channel state information is available at the receiver [43].
Given state occupation T = (n1, N − n1), we have

PY|X(y|x) = PY1|X1
(y1|x1)PY2|X2

(y2|x2)

= εe11 (1− ε1)n1−e1εe22 (1− ε2)n2−e2 .
(77)

Upon receiving word y, the ML decoder returns the codeword,

arg max
x∈C

lnPY|X(y|x) = arg min
x∈C

[γe1(x) + e2(x)], (78)

where γ = ln ε1−ln(1−ε1)
ln ε2−ln(1−ε2) , e1(x) = dH(x1,y1), and e2(x) =

dH(x2,y2). For a uniform random binary code with M
codewords, the probability of error for ML decoding is upper
bounded by 1− (1− V (n1, n2, e1, e2)/2N )M−1, where

V (n1, n2, e1, e2) =
∑

(ẽ1,ẽ2)∈M(γe1+e2)

(
n1
ẽ1

)(
n2
ẽ2

)
. (79)

Under the aforementioned scheme, information is sent over
the channel and the decoder reports the codeword with the
minimum (weighted) distance to the received vector, as seen
in (78). To reduce the probability of undetected error, we adapt
the technique established in [44] and introduce a safety margin
ν. This scheme and its ramifications are easiest to explain for
the binary symmetric channel. Suppose that dH(x̂,y) = ê,
where x̂ is the closest codeword to received vector y. The
enhanced decoder only returns x̂ when the distance between
y and the next closest codeword is greater than ê+ν. If another
codeword is present within distance ê + ν, then the receiver
declares a decoding failure.

As before, let e denote the distance between the sent
message and the received vector. The performance associated
with this procedure can be characterized by considering balls
of radii e−ν, e, and e+ν centered around the received vector.
Notice that, by construction, the transmitted codeword always
lies in the last two balls. To analyze the system, consider the
list of all codewords contained in the ball of radius e + ν.
If there is exactly one codeword on this list, it must be the
correct one and it is returned successfully by the decoder. On
the other hand, if there are more than one codeword on the list,
then a decoding failure (detected or undetected) will occur.

A detected failure takes place when the decoder elects not
to output a candidate codeword. The problem is setup so
that the correct codeword is always on the list. As such, an
undetected failure can only occur when there is at least one
other candidate inside the ball of radius e− ν. Note that this
condition is necessary, but not sufficient; multiple incorrect
candidates can be found in proximity of the received vector
in such a way that a failure is reported. If there are only two
codewords in the ball of radius e and one of them is inside the
ball of radius e − ν, then the decoder will necessarily return
the incorrect one. If there are more than two codewords within
the ball of radius e, then detected and undetected failures can
occur, although for well-designed systems such events are very
rare. It may be instructive to point out that ties between the
closest codewords are always treated as detected failures. Also,
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the probability of undetected failure decreases rapidly as ν
gets larger. Thus, by choosing an appropriate value for ν, one
can manage the level of undetected failures and hence make
the decoding process more robust, at the expense of a higher
overall probability of failure.

The intuition developed above for binary symmetric channel
also applies to the Gilbert-Elliott model except that weighted
distance is used. See [43] for additional details.

2) Exponential Bounds: In [44], Forney shows that one
can trade undetected errors for detected failures by using
a set of disjoint non-exhaustive decision regions. Similar to
the previous section, the idea is that the decoder outputs a
codeword only if its posterior probably is a factor eNτ , for
τ ≥ 0, larger than the total probability of all other codewords.
If no codeword satisfies this condition, then the decoder
declares failure and outputs an erasure. By adjusting τ , one
can optimally tradeoff the probability of erasure with the
probability of undetected error. Using this modification, one
can generalize Gallager’s derivation of the error exponent for
random codes to show that the probability of undetected error
is upper bounded by exp(−NE1(R, τ)) and the probability
of decoder failure (i.e., detected or undetected error) is upper
bounded by exp(−NE2(R, τ)), where

E1(R, τ) = max
0≤v≤ρ≤1

E0(v, ρ,Q)− ρR− vτ (80)

E2(R, τ) = E1(R, τ) + τ (81)

E0(v, ρ,Q) = − ln
∑
y

[(∑
x

Q(x)PY |X(y|x)1−v

)

×

(∑
x′

Q(x′)PY |X(y|x′)v/ρ
)ρ ]

.

(82)

Forney provides lower bounds, which are tight for small τ ,
whose expressions in terms of Gallager’s function are

E1(R, τ) ≥ max
0≤ρ≤1

E0

(
ρ

1 + ρ
, ρ,Q

)
− ρ

1 + ρ
τ (83)

E2(R, τ) ≥ max
0≤ρ≤1

E0

(
ρ

1 + ρ
, ρ,Q

)
+

1

1 + ρ
τ. (84)

Adapting these to our framework gives rise to (61) and (62).
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“Simulation-based computation of information rates for channels with
memory,” IEEE Trans. Inform. Theory, vol. 52, no. 8, pp. 3498–3508,
Aug. 2006.

[9] H. D. Pfister, J. B. Soriaga, and P. H. Siegel, “On the achievable
information rates of finite state ISI channels,” in Proc. IEEE Global
Telecom. Conf., San Antonio, TX, USA, Nov. 2001, pp. 2992–2996.

[10] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Dispersion of the Gilbert-
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