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Abstract—A prime objective of modeling genetic regulatory net-
works is the identification of potential targets for therapeutic inter-
vention. To date, optimal stochastic intervention has been studied
in the context of probabilistic Boolean networks, with the con-
trol policy based on the transition probability matrix of the as-
sociated Markov chain and dynamic programming used to find
optimal control policies. Dynamical programming algorithms are
problematic owing to their high computational complexity. Two
additional computationally burdensome issues that arise are the
potential for controlling the network and identifying the best gene
for intervention. This paper proposes an algorithm based on mean
first-passage time that assigns a stationary control policy for each
gene candidate. It serves as an approximation to an optimal control
policy and, owing to its reduced computational complexity, can be
used to predict the best control gene. Once the best control gene
is identified, one can derive an optimal policy or simply utilize the
approximate policy for this gene when the network size precludes a
direct application of dynamic programming algorithms. A salient
point is that the proposed algorithm can be model-free. It can be
directly designed from time-course data without having to infer
the transition probability matrix of the network.

Index Terms—Dynamic programming, genetic regulatory
networks, mean first-passage time, probabilistic Boolean networks,
stochastic optimal control.

I. INTRODUCTION

AN ULTIMATE objective of modeling genetic regulatory
networks is the identification of potential targets for thera-

peutic intervention [1]. For instance, in cancer, one can consider
correlation between metastasis and the abundances of messen-
ger ribonucleic acid (mRNA) for certain genes. In this vein,
the abundance of mRNA for the gene WNT5A has been found
to be highly discriminating between cells with properties typi-
cally associated with high versus low metastatic competence [2].
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Appropriate alteration in the expression of WNT5A can be per-
ceived therapeutically, and it can therefore be used to search for
an optimal intervention strategy [3].

To date, optimal regulatory intervention has been studied in
the context of probabilistic Boolean networks (PBNs), in par-
ticular, with respect to the dynamics determined by the prob-
ability transition matrix of the associated Markov chain [4].
Major efforts have focused on manipulating external (con-
trol) variables to desirably affect dynamical evolution over a
finite time horizon [5], [6]. These short-term policies have
been shown to change the dynamical performance of regula-
tory networks over a small number of stages; however, they
are not necessarily effective in changing long-run network be-
havior. To address this issue, stochastic control has been em-
ployed via dynamic programming algorithms to find station-
ary control policies that affect the steady-state distributions of
PBNs [7].

Study of infinite-horizon intervention strategies poses two
fundamental questions. First, is it possible to beneficially af-
fect a network by applying the optimal stationary control
policy? This translates into assessing the controllability of the
network. In practice, a physician would like to predict the ef-
fectiveness of a certain treatment at different stages of a disease
and on different patients. Investigating the effect of a certain
type of control on various networks is equivalent to question-
ing the controllability of the network. To date, there has been
no investigation on this important topic in the context of gene
regulatory networks. Second, can we identify the best inter-
vening gene? In other words, which gene is the best potential
“lever point,” to borrow the terminology from [8], in the sense
of having the greatest possible impact on the desired network
behavior? In principle, solving an optimal control problem for
each candidate gene and comparing the performance of the sys-
tem for these various controls would answer these questions;
however, this process is a computationally demanding proce-
dure. The complexity of dynamic programming algorithms is
vast and increases exponentially with the number of genes [9].

In their early papers, Shmulevich et al. employ two meth-
ods for selecting a candidate gene for intervention: mean first-
passage time (MFPT) and influence [1], [4]. The following bi-
ological example, borrowed from [10], explains the intuition
behind using MFPTs for selecting the best control gene. In bi-
ology, there are numerous cases where the (in)activation of a
certain gene or protein can lead more quickly (or with higher
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probability) to a particular cellular functional state or phenotype
than the (in)activation of another gene or protein. For instance,
in a stable cancer cell line, in the absence of intervention, the
cells will keep proliferating. This behavior can be reversed by
controlling the expression of certain genes. Assume that the
goal of the intervention is to push the cell into programmed cell
death (apoptosis). Further assume that we can achieve this inter-
vention with two candidate genes: p53 and telomerase. The p53
gene is the most well-known tumor suppressor gene [11]–[13].
The telomerase gene encodes telomerase, which maintains the
integrity of the end of chromosomes (telomeres) in germ cells.
Germ cells are responsible for propagating the complete genetic
material to the following generation. Telomerase also maintains
the integrity of the end of chromosomes in progenitor cells.
Progenitor cells are responsible for replenishing cells during
the normal cell turnover (homeostasis). In somatic cells, the
telomerase gene is turned off, resulting in telomere shortening
each time the cell divides—a key reason for the limited life span
of normal cells [14]. In the majority of tumor cells, telomerase
is activated, which is believed to contribute to the prolonged life
span of the tumor cells [15]. This worsens prognosis for cancer
patients [16], [17]. Extensive experimental results indicate that
when p53 is activated in the cells, for example, in response to
radiation, the cells undergo rapid growth inhibition and apop-
tosis in as short as a few hours [18]. In contrast, inhibition of
the telomerase gene also leads to cell growth inhibition, dif-
ferentiation, and cell death, but only after cells go through a
number of cell divisions (allowing telomere shortening). Cell
death takes a longer time through this latter process than via
p53 activation. The use of MFPTs for finding the best con-
trol gene is intuitive; however, it focuses on a one-step control
scenario.

The influence method distinguishes genes that have a major
impact on a predictor function from those that have only a
minor impact. This method was introduced to reflect the extent
to which a set of genes is capable of determining the value of a
target gene [4]. It has been used as a criterion to select a control
gene with the suggestion that the gene with the largest influence
on the target gene is likely to be a good control gene in the
finite- and infinite-horizon control of PBNs [6], [7]; however,
no research has been done on the overall performance of this
heuristic measure.

Capitalizing on the biological intuition behind MFPT, we
propose an algorithm based on MFPTs that assigns a stationary
control policy for each candidate gene. We call this algorithm
the MFPT algorithm and refer to the corresponding stationary
control policy as the MFPT control policy. The proposed algo-
rithm selects the MFPT control policy based on two heuristics:
1) it is preferable to reach desirable states as early as possible
and 2) it is preferable to leave undesirable states as early as
possible. The MFPT algorithm can be employed in four main
applications.

First, the MFPT algorithm can be used for predicting the best
control gene. The MFPT algorithm enables the computation of
the MFPT control policies for all the genes in the network with
a manageable complexity. The control gene with the highest
desirable effect on the long-run behavior of the network upon

the application of the corresponding MFPT control policy is
likely the most effective gene for controlling the biological sys-
tem. Second, to reduce the complexity of the optimal stochastic
control problem, the MFPT control policy can be used as an ap-
proximate solution. Contrary to optimal algorithms, the MFPT
algorithm finds policies with constant complexity. Third, the
MFPT algorithm can be used to measure the controllability of
a network. Since the MFPT control policy is an approximation
for the optimal control policy, one can define a network to be
controllable if the effect of the MFPT control policy is greater
than a desired threshold.

Finally, the MFPT algorithm can be used to design a con-
trol policy without requiring network inference. The optimal
stochastic control policies proposed thus far require perfect
knowledge of the probability transition matrix governing the
network, which must be derived from the PBN or inferred
directly. This procedure is prone to modeling errors and suf-
fers from problems of computational complexity for both net-
work inference and finding the optimal control solutions. To
achieve model-free intervention, the MFPT control policy can
be designed based on estimates of the MFPTs. The model-free
intervention method has low complexity, is robust to model-
ing errors, and adapts to changes in the underlying biological
system.

Our focus in this paper is on binary PBNs; however, the MFPT
algorithm applies without change to a PBN having any discrete
range of values. More generally, the MFPT algorithm can be
applied to any Markovian regulatory network and should be
mathematically viewed in this manner. For instance, the MFPT
algorithm applies to dynamic Bayesian networks (DBNs) [19].
The proposed method can actually be viewed for DBNs in the
same manner as with PBNs because any DBN can be represented
by a probabilistically equivalent PBN [20]. Concentrating on the
latter framework, the difficulty with PBNs possessing more than
two values is that the size of the state space expands dramatically.
Conceptually, networks with finer quantization can be analyzed
using the same tools; indeed, the original application of auto-
matic control considered a ternary network arising from comple-
mentary deoxyribonucleic acid (cDNA)-microarray data quan-
tized into three values:−1 (down-regulated), +1 (up-regulated),
and 0 (invariant) [5]. Here, let us make two points. First, from a
theoretical perspective, with finer quantization, the MFPT algo-
rithm still provides significant computational benefits over or-
dinary dynamic programming algorithms. Second, from a prac-
tical perspective, as with the melanoma example presented in
this paper, our focus is on the up–down regulation model. In this
scenario, the PBN is binary; in the case of quantization based
on down-regulation, up-regulation, or invariance, the network is
ternary.

This paper is structured in the following manner. Neces-
sary definitions are provided in Section II. The MFPT algo-
rithm and its applications are explained in Sections III and IV.
We analyze the complexity of the MFPT algorithm in Sec-
tion V. In Section VI, we corroborate our claims using ex-
tensive simulations for four applications: comparison of the
optimal and MFPT control policies, finding the best con-
trol gene, quantifying controllability, and model-free control.
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We then compare optimal and MFPT control policies for
the network obtained using melanoma gene-expression data.
Although our focus is on applications in the framework of
PBNs, the MFPT algorithm applies to any Markovian regulatory
network.

II. BACKGROUND

A. Probabilistic Boolean Networks

A PBN consists of a sequence V = {xi}n
i=1 of n nodes

where xi ∈ {0, . . . , d − 1}, together with a sequence {f l}k
l=1

of vector-valued functions called predictor functions. In the
framework of gene regulation, each element xi represents the
expression value of a gene. It is common to mix the terminol-
ogy by referring to xi as the ith gene. Each vector-valued func-
tion fl = (fl1 , . . . , fln ) determines a constituent network of the
PBN. The function fli : {0, . . . , d − 1}n → {0, . . . , d − 1} is
the predictor of gene i whenever network l is selected. The
number of quantization levels is denoted by d. At each step, a
predictor function is randomly selected according to probability
distribution {pl}k

l=1 . After selecting the predictor function fl ,
the values of genes are updated accordingly, that is, in confor-
mity with the network determined by fl . We consider PBNs with
perturbation, in which each gene may change its value with a
small perturbation probability p at each time unit. The dynam-
ics of a PBN can be represented via a Markov chain, and as a
consequence of the perturbation, the Markov chain is ergodic
and possesses a steady-state distribution.

Two quantization levels have thus far been used in practice.
If d = 2 (binary), then the constituent networks are Boolean
networks with 0 and 1 meaning OFF and ON, respectively. The
case d = 3 (ternary) arises when we consider a gene to be down-
regulated (−1), up-regulated (1), or invariant (0). This situation
commonly occurs with cDNA microarrays, where a ratio is
taken between the expression values on the test channel (red)
and the base channel (green). In this paper, we will develop
the methodology for d = 2, so that gene values are either zero
or one; however, the methodology is applicable to any finite
number of levels.

The gene–activity profile (GAP) is an n-digit binary vector
x(t) = (x1(t), . . . , xn (t)) giving the expression values of the
genes at time t, where xi(t) ∈ {0, 1}. We note that there is a
natural bijection between the GAP x(t) and its decimal repre-
sentation z(t), which takes values in S = {0, 1, . . . , 2n − 1}.
This bijection will be used later to present data.

In the presence of external controls, we suppose that the PBN
has m binary inputs, c1(t), . . . , cm (t), which specify the inter-
ventions on control genes g1 , . . . , gm . A control ci(t), which
can take values zero or one at each step t, specifies the ac-
tion on the control gene gi . The decimal bijection of the con-
trol vector ug1 ,...,gm

(t) ∈ C = {0, 1, . . . , 2m −1} describes the
complete status of all the control inputs. As in previous appli-
cations, we focus on a single control gene ug (t) ∈ C = {0, 1}.
The treatment alters the status of the control gene g, which can
be selected among all the genes in the network. If the control at
time step t is on, ug (t) = 1, then the state of the control gene

g is toggled; if ug (t) = 0, then the state of the control gene g
remains unchanged.

System evolution is represented by a stationary discrete-time
equation

z(t + 1) = f(z(t), ug (t), w(t)) ∀t = 0, 1, . . .

where state z(t) is an element of the state–space S. The distur-
bance w(t) is the manifestation of uncertainties in the PBN. It
is assumed that both the gene perturbation distribution and the
network switching distribution are independent and identical for
all time steps t. The state z(t) at any time step t is a GAP. Orig-
inating from a state i, the successor state j is selected randomly
within the set S according to the transition probability

pij (u)
�
= P (z(t + 1) =

j

z(t)
= i, ug (t) = u)

for all i and j in S, and for all u in C. Gene perturbation ensures
that all the states in the Markov chain communicate with each
other. Hence, the finite-state Markov chain has a unique steady-
state distribution [1].

B. Optimal Intervention

The problem of optimal intervention for PBNs is formu-
lated as an optimal stochastic control problem. A cost-per-stage
r(i, u, j) is associated to each intervention in the system. In
general, a cost-per-stage may depend on the origin state i, the
successor state j, and the control input u. We assume that the
cost-per-stage is stationary and bounded for all i, j in S, and
u in C. We define the expected immediate cost in state i when
control u is selected by

r(i, u) =
∑
j∈S

pij (u) r(i, u, j).

We consider the discounted formulation of the expected total
cost. The discounting factor α ∈ (0, 1) ensures the convergence
of the expected total cost over the long run [21]. In the case of
cancer therapy, the discounting factor emphasizes that obtaining
treatment at an earlier stage is favored over later stages. The
expected total discounted cost, given a policy πg , an initial state
i, and control gene g, is denoted by

Jπg
(i) = lim

N →∞
E

{
N −1∑
t=0

αt r(z(t), µg (z(t)), z(t + 1)) | i

}
.

(1)
A policy πg = {µg (0), µg (1), . . .} is a sequence of decision
rules µg (t) : S → C, for each time step t, when the control
gene is g. The vector Jπg

of the expected total costs is called
the value function. In a stochastic control problem, we seek an
intervention strategy π∗

g among all the admissible intervention
strategies Πg that minimizes the value function for each state i,
i.e.,

π∗
g (i) = arg min

πg ∈ Πg

Jπg
(i) ∀ i ∈ S. (2)

A stationary intervention strategy for the control gene g is an
admissible intervention strategy of the form πg = {µg , µg , . . .}.
It is known that an optimal intervention strategy exists for the
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discounted optimal stochastic control problems. The optimal
cost function J∗ satisfies

J∗(i) = min
u ∈C

r(i, u) + α

2n −1∑
j=0

pij (u)J∗(j)

 ∀ i ∈ S.

(3)
Furthermore, J∗ is the unique solution of this equation within
the class of bounded functions. Equation (3) is known as the
Bellman optimality equation. The optimal control policy attains
the minimum on the right-hand side of the Bellman optimal-
ity equation for all i. Moreover, an optimal policy determined
by the Bellman optimality equation is also a stationary policy.
For the proofs of the earlier statements and more details, one
can refer to [21]. Standard dynamic programming algorithms
can be used to find a fixed point of the Bellman optimality
equation.

C. Influence

Influence is a method for quantifying the relative impact of
genes on other genes within the context of PBNs [4]. The in-
fluence Ij (f) of gene xj on the function f , with respect to the
probability distribution D(x), x ∈ {0, 1}n , is defined as

Ij (f) = ED

[
∂f(x)
∂xj

]
(4)

where ED [·] is the expectation operator with respect to
the distribution D, ∂f(x)/∂xj = f(x(j,0)) ⊕ f(x(j,1)) is the
partial derivative of the Boolean function f , the symbol
⊕ is addition modulo 2 (EXCLUSIVE OR), and x(j,k) =
(x1 , . . . , xj−1 , k, xj+1 , . . . , xn ) for k ∈ {0, 1}. In other words,
(4) gives the influence as the probability [under the distribu-
tion D(x)] that a toggle of the jth variable changes the value
of the function. In the context of PBNs, the influence of gene
xk on gene xi is given by Ik (xi) =

∑l(i)
j=1 Ik (f (i)

j ) · p(i)
j where

{p(i)
j }l(i)

j=1 are the selection probabilities of the predictor func-
tions of gene i and l(i) represents the number of predictor func-
tions of gene i [4]. To quantify the long-run influence, D(x) is
the stationary distribution of the PBN.

III. MFPT ALGORITHM

In this section, we first elaborate on how the MFPT algorithm
is designed based on the MFPT. We then summarize the MFPT
algorithm. Application of the MFPT algorithm requires the des-
ignation of desirable and undesirable states, and this depends
upon the existence of relevant biological knowledge. Interven-
tion is performed by flipping (toggling) the expression status of
a particular gene from ON to OFF or vice versa, the intent being
to externally guide the time evolution of the network toward
more desirable states. If g is the control gene, then applying the
control (intervention) in state x translates into flipping the value
of g in that state (the control gene g changes to zero if its value is
one and vice versa). Consequently, the network resumes its tran-
sition from the new state x̃, which we call the flipped state. In the
context of therapy, the state–space of a PBN can be partitioned
into desirable and undesirable states. Given a control gene, when

a desirable state reaches the set of undesirable states, on aver-
age, faster than its flipped state, it is reasonable to intervene
and transition into the flipped state. Similarly, if an undesirable
state reaches the set of desirable states, on average, faster than
its flipped state, it is reasonable not to intervene. These insights
motivate the use of MFPTs for designing intervention strategies.

Without loss of generality, we can assume that the transition
probability matrix P of the Markov chain (representing a PBN)
is partitioned according to

P =
(

PD,D PD,U
PU ,D PU ,U

)
where D and U are the subsets of desirable and undesirable
states, respectively. The MFPTs are computed by solving the
following systems of linear equations [22]:

KU = e + PD,D · KU (5)

KD = e + PU ,U · KD (6)

where e is a column vector of 1’s with appropriate length, KU
is a vector containing the MFPTs from each state in the subset
of desirable states D to undesirable states in set U , and KD is
a vector containing the MFPTs from each state in the subset of
undesirable states U to the desirable states in set D.

A control policy µg corresponding to control gene g is a vector
of size 2n , the number of states in the network. The decision rule
µg : S → C specifies the control action for each state x in S.
Having µg (x) = 0 for state x means that whenever the network
reaches state x, no control is applied and the system continues
its transition based on the transition probabilities of state x. On
the other hand, having µg (x) = 1 implies that, whenever the
network reaches state x, the control is applied and the system
continues its evolution based on the transition probabilities of
state x̃, the flipped state of x.

The goal of the MFPT algorithm is to design the MFPT con-
trol policies {µ̂g}n

g=1 . The objective is to choose a control value
u for every state in S such that the network evolves toward
more desirable states. The MFPT algorithm selects the control
policy for control gene g in the following manner. Assume that
state x is an undesirable state. We compare the MFPTs from
state x to D and from the flipped state x̃ to D. In other words,
we would like to know, on average, which one of these two
states, x and x̃, hits the set of desirable states for the first time
faster than the other one. The algorithm chooses µ̂g (x) = 1 if
the difference between the MFPTs of state x and the flipped
state x̃ to the set of desirable states, i.e., KD(x) − KD(x̃),
is greater than a tuning parameter γ (to be discussed). Oth-
erwise, µ̂g (x) = 0. Analogously, if state x is desirable, then
µ̂g (x) = 1 if the difference between the MFPTs of state x and
the flipped state x̃ to undesirable states, i.e., KU (x̃) − KU (x),
is greater than γ. Otherwise, µ̂g (x) = 0. These comparisons are
repeated for all states. Algorithm 1 summarizes the proposed
procedure.

The threshold γ in the MFPT algorithm is a tuning param-
eter chosen based on the ratio of the cost of control to the
cost of undesirable states. When the cost of applying treatment
in a state is high compared to the cost of undesirable states,
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an optimal control policy is less likely to apply the control
frequently. Thus, γ is set to a larger value when this ratio is
higher, the intent being to apply control less frequently. We
explain after the following definitions how one can set this
parameter.

An effective control policy reduces the likelihood of visiting
undesirable states compared to a network without intervention
by modifying the long-run behavior of the network. The effec-
tiveness of a control policy can be measured by the amount of
change (shift) in the aggregated probability of undesirable states
before and after the intervention. As a performance measure we
define

∆Pg =
∑

i∈U πi −
∑

i∈U πg
i∑

i∈U πi

where πg
i is the probability of being in undesirable state i in

the long run after intervening with control gene g and πi is the
probability of being in undesirable state i in the long run when
there is no intervention. The ratio ∆Pg measures the proportion
of reduction in the total probability of undesirable states in the
steady state when the control gene g is selected. We denote
this proportion by ∆P opt

g when an optimal control policy µ∗
g is

applied. In other words, in the optimal case, one can shift the
aggregated probability of undesirable states to desirable states
by ∆P opt

g through appropriately altering the expression of the
control gene g. Similarly, the shift obtained by the MFPT con-
trol policy µ̂γ

g is denoted by ∆P
MFPT(γ )
g , where γ is the tuning

parameter.
We define the probability of the execution of control as

Γg =
2n −1∑
j=0

πj · I(µg (j) = 1) (7)

where n is the number of genes, πj is the steady-state probability
of state j ∈ S, µg (j) is the value of the control policy in state

j, and I is the indicator function. The purpose of introducing
this probability is to have a fair evaluation of the performance
of the MFPT control policy in terms of the number of control
executions, which for the optimal policy is related to the cost
of control. For each control gene g, one can define Γopt

g as the
probability of the execution of control when the optimal control
policy is applied. Similarly, ΓMFPT(γ )

g is the probability of the
execution of control when the MFPT control policy with the
parameter γ is applied.

We numerically find the value of the parameter γ for each
control cost. We generate random intervention problems and
calculate the averages of Γopt

g and ΓMFPT(γ )
g . These averages

are taken over random intervention problems with fixed control
cost. Starting from γ = 0, we increase the value of γ. For each
control cost, the desired value of γ is the minimal one for which,
on average, Γopt

g > ΓMFPT(γ )
g . This condition guarantees that, on

average, the MFPT control policy applies no more control than
the optimal control policy. Since the values of the parameter γ
are found from random intervention problems, in practice, one
can have a conservative approach and choose the parameter γ to
be greater than the proposed value. The conservative approach
can assure a high probability that Γopt

g > ΓMFPT(γ )
g . On the other

hand, the deviation of ∆P
MFPT(γ )
g from ∆P opt

g becomes larger.

IV. APPLICATIONS OF MFPT ALGORITHM

We devise solutions according to the MFPT algorithm for
four intervention applications.

1) Identification of the Best Control Gene: Recalling the ex-
ample of p53 and telomerase in Section I, it is important to select
the most effective control gene in a therapeutical intervention.
The best control gene g∗ can be found by directly solving a dy-
namic programming algorithm and computing {∆P opt

g }n
g=1 for

all the genes g in the network. In short, g∗ is given by

g∗ = arg max
g=1,...,n

∆P opt
g . (8)

However, this optimal method to find the best control gene
is computationally prohibitive. On the other hand, the MFPT
algorithm enables the computation of the MFPT control policies
{µ̂γ

g }n
g=1 for all the genes in the network with an acceptable

complexity. Taking this approach, the MFPT algorithm predicts
the best control gene to be

ĝ = arg max
g=1,...,n

∆P MFPT(γ )
g . (9)

We will show that ĝ = g∗ with high probability and that
∆P opt

g ∗ − ∆P opt
ĝ is small whenever ĝ �= g∗. In this context, we

are using the MFPT algorithm to find the control gene. Once the
best gene candidate is identified, an optimal control policy can
be obtained using dynamic programming algorithms. We will
also show that the MFPT-based prediction of the best control
gene significantly outperforms the influence method.

2) Approximation of the Optimal Control Policy: The MFPT
algorithm can devise an intervention strategy as an approxima-
tion of the optimal intervention strategy. To this end, we numer-
ically find the value of the parameter γ for each control cost
so that, on average, Γopt

g ∗ > ΓMFPT
g ∗ . To assess the accuracy of the



2324 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 10, OCTOBER 2008

approximation, we show that the average of ∆P opt
g ∗ − ∆P

MFPT(γ )
g ∗

over random intervention problems with fixed control cost is
small. Note that, so as not to confound approximation accuracy
with the MFPT algorithm’s ability to find a control gene, we
apply both the optimal and MFPT methods using the optimal
control gene g∗.

3) Controllability: An important aspect of prognosis is
quantifying the possibility of recovery. In our framework, this
amounts to quantifying the controllability of a gene regulatory
network, a concept borrowed from traditional control theory.
Can the network be sufficiently controlled to provide meaning-
ful recovery? We desire a controllability measure where the ob-
jective of the control is to reduce the likelihood of observing the
undesirable states in the long run. An optimal control strategy
takes into account the cost of control, but here, we want to fo-
cus only on the possibility of sufficient control, absent concerns
with costs, either medical or financial. To this end, we choose
the cost of control to be zero. The zero control–cost strategy
admits any number of states with active control. Our point here
(one that is certainly debatable) is that we desire a measure of
controllability with no restrictions on the number of times the
control might be applied. Thus, a possible approach is to set
the cost of control to zero and compute ∆P opt

g ∗ . To reduce the

computational burden, we propose ∆P
MFPT(0)
g ∗ (γ = 0) as a con-

trollability measure. Our simulations show that the ∆P
MFPT(0)
g ∗

is a highly accurate approximation of ∆P opt
g ∗ when the cost of

control is zero. Therefore, the MFPT algorithm can be employed
to determine the controllability of a network. For example, if
∆P

MFPT(0)
g ∗ is very small, we conclude that the network is not

controllable. If ∆P
MFPT(0)
g ∗ = 0.5, then we conclude that it is

possible to shift 50% of the probability mass of the undesirable
states to desirable ones in the long run, given the application of
the control has zero cost.

4) Model-Free Intervention: To date, the proposed interven-
tion methods for PBNs are model-dependent, requiring at least
the knowledge of the transition probability matrix. This can be
derived from the PBN if the latter is known. Since in practice,
PBNs are not known except via system identification from ob-
served data, one is faced with a difficult inference problem [23].
This problem can be avoided by directly inferring the transition
probability matrix; however, this is still a formidable task be-
cause the complexity of estimating the transition probabilities
of a Markov chain increases exponentially with the number of
genes in the model. When time-course data are available, the
MFPT algorithm can be implemented by directly estimating the
MFPTs. The estimated MFPTs are used to construct the matri-
ces of the MFPTs, KU and KD. The MFPT algorithm can then
be applied to the estimated matrices KU and KD to devise a
model-free MFPT control policy.

In the following, we propose a procedure for estimating the
MFPTs from time-course measurements. Assume that x is a
desirable state and it is observed at time t0 . Further assume that,
starting from time t0 , the first undesirable state occurs at time
t0 + k0 . In other words, it takes k0 time points for the desirable
state x to transition (reach) to an undesirable state. Similarly,
assume that the next observation of state x is at time t1 , and

since time t1 , the first undesirable state occurs at time t1 + k1 .
In this example, the average first passage time from state x to
the subset of undesirable states is (k0 + k1)/2. Likewise, one
can define an example for an undesirable state y reaching the
subset of desirable states. It is evident that for a larger number of
observations, this estimation becomes more accurate. The earlier
procedure needs to be implemented with a low complexity. At
each time point, we update the number of steps for each state
to reach the opposite subset of states and store the frequency of
the occurrence of each state. One needs to update the average
first passage times for a new observation. The complexity of
estimating the MFPTs following our procedure is constant with
respect to the number of genes for each iteration. More details
regarding the implementation can be found in the supplementary
materials.

An advantage of the model-free approach is that the estimated
matrices KU and KD can be updated whenever new time-course
data become available. The possibility of updating the estimated
MFPTs enables the MFPT algorithm to adapt its control policy
to the status of gene interactions. In other words, the model-free
MFPT control method is adaptive to changes in the network
model. In contrast, the control policy devised by the existing
intervention methods cannot adapt to the changes in the status
of gene interactions. Once the PBN is inferred form data, the
model-dependent control policy is fixed.

Through numerical studies, we will exhibit the effectiveness
of the model-free MFPT control policy obtained by estimat-
ing the MFPTs. On one hand, we will estimate the matrices
KU and KD based on synthetic time-course data and use the
MFPT algorithm to find the control policy; on the other hand,
we will use the same time-course data to build a Markov chain
representing the dynamics of the model and then find the con-
trol policy based on the estimated transition probability matrix
using dynamic programming. We will observe that the MFPT
control policy based on the estimated MFPTs outperforms the
control policy devised from the estimated transition probabili-
ties of the Markov chain, given the same set of time-course data,
for feasible size datasets.

V. COMPLEXITY ANALYSIS OF MFPT ALGORITHM

The main objective of an effective intervention strategy is to
reduce the likelihood of visiting undesirable states compared
to a network without intervention by modifying the long-run
behavior of the network. Given a time-course dataset, there are
two possible approaches for designing a strategy for any model
such that its dynamic behavior can be represented as a Markov
chain (such as PBN or dynamic Bayesian network).

In the first approach, one can estimate the transition proba-
bilities of the states from time-course measurements. Let us call
this approach “model-dependent.” We require all the details
about the model, i.e., the transition probabilities of the Markov
chain. Various methods can be employed to design an effective
intervention strategy based on the estimated model. The opti-
mal control policy can be designed via dynamic programming
techniques [7]. In favor of lower computational complexity, an
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approximation of the optimal control policy can be achieved
using the MFPT algorithm.

In the second approach, an effective intervention strategy can
be designed directly from time-course measurements. We call
this approach “model-free.” In contrast to the model-dependent
approach where the transition probabilities of the Markov chain
are needed, we do not require the details of the model. To this
end, a model-free algorithm based on reinforcement learning
has recently been introduced [24]. This method bypasses the
impediment of model estimation and an effective control policy
can be designed with a low complexity. We propose that the
MFPT algorithm can also be considered as a model-free method.
In this section, we analyze the complexity of the model-based
and the model-free MFPT algorithms.

A. Model-Dependent Approach

In the previous section, we introduced the four major ap-
plications of the MFPT algorithm: identification of the best
control gene, approximation of an optimal control policy, con-
trollability, and model-free intervention. Employment of the
MFPT algorithm in the first three applications is considered
as a model-dependent approach since it is assumed that the
transition probability matrix of the Markov chain is known.
Given the model is known, let us compare the computational
complexities of the dynamic programming and the MFPT
algorithms.

To find an optimal control policy using value or policy iter-
ation, one should iteratively find the value (cost) function until
the algorithm reaches the fixed point of the Bellman optimality
equation in (3). Once the optimal cost functions are computed,
one must check which control value attains the minimum on
the right-hand side of the Bellman optimality equation and this
procedure should be iterated for all the states. To the best of our
knowledge, there does not exist a tight upper bound on the num-
ber of iterations required to find an optimal policy using either
value or policy iteration, despite recent research initiatives [25].
Given the control gene, the policy iteration algorithm has com-
plexity O(23n ) per iteration, whereas the complete complexity
of the MFPT algorithm, which consists of two matrix inver-
sions, is O(23n ). In general, it is known that the policy iteration
algorithm converges, but it is not known whether “the number
of iterations in policy iteration can be bounded by a polyno-
mial in the instance size” [25] . Even assuming that the number
of iterations can be bounded by a polynomial in the number
of states, the complexity of the MFPT algorithm is lower than
the policy iteration algorithm because it is computed once and
does not require iteration. Regarding the value iteration algo-
rithm, the asymptotic upper bound on the number of iterations
required to find an optimal policy using the value iteration al-
gorithm is polynomial in the number of states [25]. The degree
of the polynomial is determined to be greater than 2 in spe-
cial cases [26], [27]. Given the complexity of each iteration in
the value iteration algorithm is O(22n ), the complexity of the
value iteration algorithm to find an optimal control policy is
O(2(2+α)n ), where α > 1. Hence, the complexity of the MFPT
algorithm is also lower than the complexity of the value itera-
tion algorithm. To find the optimal cost functions for n control

Fig. 1. Average execution time of the value and policy iteration algorithms
over 1000 randomly generated intervention problems as functions of the number
of genes along with the execution times of the MFPT algorithm.

genes, the complexity of a dynamic programming algorithm
is n times the complexity of this algorithm for one control
gene. In contrast, once the MFPT vectors are computed, they
can be used to devise MFPT control policies for all control
genes.

It is important to point out that for any control gene, in ad-
dition to the aforementioned complexities, the dynamic pro-
gramming and the MFPT algorithms must loop over all the
states to find their corresponding control policies. In dynamic
programming algorithms, to obtain the optimal control policy,
one must check which control value attains the minimum on
the right-hand side of the Bellman optimality equation and this
procedure must be iterated for all the states. In the MFPT algo-
rithm, one must investigate which control value leads to a more
favorable MFPT and this procedure must be repeated for all the
states.

It is evident from the earlier analysis that the application of
our proposed method is restricted to small number of genes since
the complexity of the MFPT algorithm increases exponentially
with the number of genes. We should point out that in our appli-
cation of interest, intervention in gene regulatory networks, the
goal is not to model fine-grained molecular interactions among
a host of genes, but rather to model a limited number of genes,
typically with very coarse quantization, whose regulatory activ-
ities are significantly related to a particular aspect of a specific
disease, such as metastasis in melanoma [3]. Hence, while the
asymptotic results on the complexities of optimal algorithms are
encouraging, they are not our main interest; rather, our problem
deals with networks with small numbers of states. Fig. 1 shows
the average execution time of the value and policy iteration al-
gorithms over 1000 randomly generated intervention problems
as a function of the number of genes n along with the execution
times of the MFPT algorithm. Per this figure, the execution time
of the MFPT algorithm is much smaller than the execution time
of the two optimal algorithms. The direct comparison has been
limited to ten-gene networks on account of the high complex-
ity of the modeling and optimal intervention algorithms. The
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maximum size of the intervention problem that can be solved
by our MFPT method is hardware-dependent. For instance,
our current hardware configuration (single Xeon processor and
1-GB memory) can obtain MFPT intervention policy for a
synthetic 15-gene regulatory network, which, given the data
limits of current expression measuring technology, is suffi-
cient for the applications in which we are now engaged.
Given more memory and processing power, intervention strate-
gies can be designed for larger networks. Should the need
arise for larger networks, we will consider implementation on
our Beowulf cluster at the Translational Genomics Research
Institute.

B. Model-Free Approach

The model-dependent approaches yield effective solutions
for large numbers of observations. However, these approaches
have major drawbacks in practice. For lower numbers of ob-
servations, which correspond better to feasible experimental
conditions, estimating the Markov chain yields poor results.
Estimation errors may have a huge impact on finding an ef-
fective intervention strategy, which is often quite sensitive
to changes in the transition probabilities [28]. Furthermore,
the complexity of estimating the transition probabilities of
a Markov chain increases exponentially with the number of
genes in the model, O(22n ). This is in addition to the com-
plexity of designing an effective intervention strategy. Hence,
a procedure that can find an effective intervention strategy
without having to know the transition probabilities is very
attractive.

The model-free-based MFPT algorithm (fourth application)
estimates the MFPTs from time-course measurements. The
complexity of estimating these vectors following the proposed
procedure in the previous section is constant with respect to n
for each iteration, where n denotes the number of genes. In other
words, we devise an effective intervention strategy by learning
about the MFPTs directly from the data.

The highlight of this paper is the possibility of employing
the MFPT algorithm in a model-free approach. To this end, we
summarize the two main benefits of our proposed model-free
method: 1) the complexity of the modeling and intervention is
significantly less than that of the model-dependent methods and
2) in contrast to the optimal control problem approach, which is
sensitive to changes in the system, the MFPT algorithm needs
the average behavior of the system and is expected to be more
appealing for smaller number of observations. We corroborate
this claim in Section VI by comparing the model-free MFPT
method with the model-dependent optimal control method.

VI. RESULTS AND DISCUSSION

In this section, we first study the performance of the MFPT
algorithm for each of the aforementioned applications through
extensive simulations of random PBNs. We then compare the
performance of the MFPT algorithm and the influence method
for the network obtained from a melanoma gene-expression
dataset.

A. Synthetic Networks

We postulate the following cost-per-stage:

r(u, j) =


0, if u = 0 and j ∈ D
10, if u = 0 and j ∈ U
c, if u = 1 and j ∈ D
10 + c, if u = 1 and j ∈ U

where c is the cost of control. The target gene is cho-
sen to be the most significant gene in the GAP. We as-
sume that the up-regulation of the target gene is undesir-
able. Consequently, the state–space is partitioned into de-
sirable states D = {0, . . . , 2n−1 − 1}, and undesirable states
U = {2n−1 , . . . , 2n − 1}, where n is the number of genes. The
cost values have been chosen in accord with an earlier study [7].
Since our objective is to down-regulate the target gene, a higher
cost is assigned to destination states having an up-regulated tar-
get gene. Moreover, for a given status of the target gene for a
destination state, a higher cost is assigned when the control is
applied, versus when it is not. In practice, the cost values will
have to mathematically capture the benefits and costs of inter-
vention and the relative preference of states. These cost values
will eventually be set with the help of physicians in accordance
with their clinical judgment. Although this is not feasible within
current medical practice, we do believe that such an approach
will become feasible when engineering approaches are inte-
grated into translational medicine. In order to investigate the
effect of the cost of control in our algorithm, we vary its value
from zero to ten, which is the cost of the undesirable states.

We generate random PBNs in the following manner. Each
PBN consists of ten constituent BNs. Each BN is randomly
generated with a specific bias b, the bias being the probability
that a randomly generated Boolean function takes on the value
one. Since the bias affects the dynamical properties of the ran-
domly generated BNs [29], we take it as a parameter in our
simulations. We randomly select the bias b of a BN from a beta
distribution. We vary the mean of the beta distribution from 0.3
to 0.7 with step size 0.1. The variance σ2 of the beta distribution
is set to a constant value 0.0001. This provides random biases
from low (0.3) to high (0.7). We generate 1000 random PBNs
for each bias mean. For each PBN, the transition probabilities
of the corresponding Markov chain are estimated. The earlier
procedure is repeated for networks of five to ten genes. Due to
the computational complexity of the optimal stochastic control
problem and the estimation of the transition probabilities of the
corresponding Markov chain, the study of a large number of
networks beyond ten genes is outside our current computational
capacity.

1) Identification of the Best Control Gene: We first show the
performance of the MFPT algorithm and the influence method
when they are employed to predict the best control gene. It is
assumed that the cost of control c is equal to 1. In Tables I–IV,
we compare the performances of the MFPT algorithm and the
influence method for predicting the best control gene. First, the
optimal control policy for each control gene is obtained by a
dynamic programming algorithm. The best control gene g∗ is
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TABLE I
PROBABILITY OF FINDING THE BEST CONTROL GENE

WITH MFPT ALGORITHM WHEN c = 1 FOR NETWORKS

WITH DIFFERENT NUMBER OF GENES

TABLE II
AVERAGE DIFFERENCE BETWEEN PROPORTIONS OF REDUCTION IN TOTAL

PROBABILITY OF UNDESIRABLE STATES OBTAINED BY THE BEST CONTROL

GENE g∗ AND PREDICTED CONTROL GENE OBTAINED BY MFPT ALGORITHM ĝ
FOR NETWORKS WITH VARIOUS NUMBER OF GENES

TABLE III
PROBABILITY OF FINDING THE BEST CONTROL GENE WITH THE INFLUENCE

METHOD WHEN c = 1 FOR NETWORKS WITH DIFFERENT NUMBER OF GENES

TABLE IV
AVERAGE DIFFERENCE BETWEEN PROPORTIONS OF REDUCTION IN TOTAL

PROBABILITY OF UNDESIRABLE STATES OBTAINED BY THE BEST CONTROL

GENE g∗ AND PREDICTED CONTROL GENE OBTAINED BY INFLUENCE METHOD

ğ FOR NETWORKS WITH VARIOUS NUMBER OF GENES

found based on (8). Similarly, the MFPT control policy for each
control gene is computed and the predicted control gene ĝ is
found based on (9). The influence method is also employed to
predict the best control gene. The predicted best control gene
by the influence method is called ğ. We define the probability
of the correct prediction of each method to be the number of
PBNs for which the method correctly predicts the best control
gene divided by the total number of PBNs in the experiment.
The probabilities of correctly predicting the best control gene
by the MFPT algorithm and the influence method are shown in
Tables I and III. The average differences between proportions
of reduction in the total probability of undesirable states cor-

TABLE V
PROBABILITY OF FINDING THE BEST CONTROL GENE

WITH MFPT ALGORITHM

TABLE VI
AVERAGE DIFFERENCE BETWEEN PROPORTIONS OF REDUCTION IN TOTAL

PROBABILITY OF UNDESIRABLE STATES OBTAINED BY THE BEST CONTROL

GENE g∗ AND PREDICTED CONTROL GENE OBTAINED BY MFPT ALGORITHM ĝ
WITH VARIOUS COST VALUES

TABLE VII
PROBABILITY OF FINDING THE BEST CONTROL GENE

WITH INFLUENCE METHOD

TABLE VIII
AVERAGE DIFFERENCE BETWEEN PROPORTIONS OF REDUCTION

IN TOTAL PROBABILITY OF UNDESIRABLE STATES OBTAINED

BY THE BEST CONTROL GENE g∗ AND PREDICTED CONTROL GENE OBTAINED

BY INFLUENCE METHOD ğ WITH VARIOUS COST VALUES

responding to the gene predicted by each method and the best
control gene, i.e., (∆P opt

g ∗ − ∆P opt
ĝ ) and (∆P opt

g ∗ − ∆P opt
ğ ), are

shown in Tables II and IV. In our experiments, the probability of
the correct prediction by the MFPT algorithm is always greater
than 0.94. Table II shows that ∆P opt

g ∗ − ∆P opt
ĝ on average is less

than 0.0002.
The performance of the influence method is also shown in

Tables III and IV. These tables suggest that approximately 0.60
of the time the influence method’s prediction is correct. In gen-
eral, ∆P opt

g ∗ − ∆P opt
ğ is greater than 0.001. Tables V–VIII show

the performance of the MFPT algorithm for higher values of c.
Although the correct prediction of the MFPT algorithm slightly
degrades for higher values of the control cost c, it still outper-
forms the influence method.

2) Approximation of the Optimal Control Policy: Once the
best control gene g∗ is known, the corresponding MFPT con-
trol policy µ̂γ

g ∗ can be used as an approximate solution to the
optimal stochastic control problem. As previously explained,
the parameter γ depends on the ratio of the cost of control to
the cost of undesirable states. We numerically find the min-
imal value of the parameter γ for each control cost so that,
on average, Γopt

g ∗ > ΓMFPT(γ )
g ∗ . It is shown that the average of

∆P opt
g ∗ − ∆P

MFPT(γ )
g ∗ over random intervention problems with

fixed control cost is small. We generate random PBNs fol-
lowing the procedure explained earlier. The cost of undesir-
able states is fixed. For the PBNs with identical bias mean, we
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Fig. 2. (a) Average of ∆P
MFPT(γ )
g ∗ and ∆P

opt
g ∗ . (b) Average of ΓMFPT(γ )

g ∗

and Γopt
g ∗ . Horizontal axis shows the ratio of the cost of control to the cost of

undesirable states. Values of γ are chosen from Table IX.

TABLE IX
VALUE OF PARAMETER γ AS FUNCTION OF RATIO OF COST

OF CONTROL TO COST OF UNDESIRABLE STATES

formulate the intervention problems with various costs of con-
trol, which are varied such that the ratio of the cost of control to
the cost of undesirable states changes from 0 to 1. For PBNs with
each bias mean and cost of control, we compute the averages of
∆P opt

g ∗ and Γopt
g ∗ . The averages are taken over 1000 intervention

problems with PBNs whose bias means are fixed. Similarly, the
averages of ∆P

MFPT(γ )
g ∗ and ΓMFPT(γ )

g ∗ are found. Furthermore,
we compute the average of these averages over all bias means.
The parameter γ is determined such that ΓMFPT(γ )

g ∗ < Γopt
g ∗ . For

each given control cost, we show the behavior of ∆P opt
g ∗ and Γopt

g ∗

(∆P MFPT
g ∗ and ΓMFPT(γ )

g ∗ ). As seen in Fig. 2(a), both ∆P
MFPT(γ )
g ∗

and ∆P opt
g ∗ decrease when the ratio of the cost of control to the

cost of undesirable states increases. We observe that, on average,
the difference between ∆P opt

g ∗ and ∆P
MFPT(γ )
g ∗ is less than 0.02.

As Fig. 2(b) shows, the probability of the execution of control for
both policies decreases as the cost of control increases. Table IX

Fig. 3. (a) Average of ∆P
MFPT(γ )
g ∗ and ∆P

opt
g ∗ . (b) Average of ΓMFPT(γ )

g ∗

and Γopt
g ∗ . Horizontal axis shows the ratio of the cost of control to the cost of

undesirable states. Values of γ are chosen conservatively from Table X.

TABLE X
CONSERVATIVE VALUE OF THE PARAMETER γ AS A FUNCTION OF THE RATIO

OF THE COST OF CONTROL TO THE COST OF UNDESIRABLE STATES

shows the relation of the parameter γ with the ratio of the cost
of control to the cost of undesirable states found in the earlier
experiment. The extensive results of the simulations at various
bias means can be found in the supplementary materials.1

Since the values in Table IX are found from random PBNs,
one can have a conservative approach and choose the parameter
γ to be greater than the proposed values. To this end, ΓMFPT(γ )

g ∗

is smaller than Γopt
g ∗ in each intervention problem. Fig. 3 and

Table X show the outcomes of the same experiment explained
earlier when the parameter γ is chosen conservatively. In all
the intervention problems of this experiment, ΓMFPT(γ )

g ∗ < Γopt
g ∗

and the deviation of ∆P
MFPT(γ )
g ∗ from ∆P opt

g ∗ is smaller than

1This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes a pdf file of
extensive simulation results. This material is 64 kB in size.
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Fig. 4. Average of |∆P opt − ∆̂P opt| (solid) and |∆P opt −∆P MFPT(γ ) | (dash)
over 1000 trials as a function of the logarithm of estimation duration.

0.04. Results of this experiment for the networks with various
numbers of genes are presented in the supplementary materials.

3) Controllability: To corroborate that the MFPT algorithm
can be employed to determine the controllability of a network,
we consider the results in Fig. 2. In this figure, when the cost of
control is zero (γ = 0), ∆P

MFPT(0)
g ∗ is an accurate approximation

of ∆P opt
g ∗ . The average of the difference ∆P

MFPT(0)
g ∗ − ∆P opt

g ∗ has
a negligible value equal to 0.0007.

4) Model-Free Intervention: To compare the performance
of the model-free MFPT control algorithm with an optimal
control algorithm, where the latter includes estimation of the
transition probability matrix, we generate synthetic time-course
data for 100 000 time steps from an existing model. Using the
synthetic time-course data, we estimate the MFPTs after each
10k time steps, for k = 2, . . . , 5, and fix the cost of control
to have the value 1. As the duration of estimating the MFPTs
increases, ∆P

MFPT(γ )
g ∗ approaches ∆P opt

g ∗ . Fig. 4 shows the aver-

age of |∆P opt
g ∗ − ∆P

MFPT(γ )
g ∗ |, where ∆P opt

g ∗ is obtained from the
original transition probabilities, with various estimating dura-
tions over 1000 trials. For an optimal control policy based on
the Markov chain estimated from the data, we denote the shift

in the steady-state distribution by ∆̂P opt
g ∗ . Fig. 4 shows the aver-

age of |∆P opt
g ∗ − ∆̂P opt

g ∗ | with various estimating durations over
1000 trials. The graphs clearly demonstrate the superior perfor-
mance of the model-free approach using the MFPT algorithm.
In particular, for lower numbers of observations, which cor-
respond better to feasible experimental conditions, estimating
the Markov chain yields poor results, whereas the MFPT ap-
proximation performs quite well. We have conducted the same
experiment with various costs of the control for networks with
different numbers of genes, and these results can be found in
the supplementary materials.

B. Melanoma Gene Expression

In this section, we compare the performances of optimal and
MFPT control polices in the context of a gene network de-
veloped from steady-state data. These steady-state data were
collected in a profiling study of metastatic melanoma in which
the abundance of messenger RNA for the gene WNT5A was

found to be highly discriminating between cells with properties
typically associated with high metastatic competence versus
those with low metastatic competence [2]. These findings were
validated and expanded in a second study, in which experimen-
tally increasing the levels of the WNT5A protein secreted by
a melanoma cell line via genetic engineering methods directly
altered the metastatic competence of that cell as measured by
the standard in vitro assays for metastasis [30]. A further find-
ing of interest in this study was that an intervention that blocked
the WNT5A protein from activating its receptor, the use of an
antibody that binds the WNT5A protein, can substantially re-
duce WNT5A’s ability to induce a metastatic phenotype. This
suggests control based on intervention that alters the contribu-
tion of the WNT5A gene to biological regulation. Disruption of
this influence can potentially reduce the chance of a melanoma
metastasizing, a desirable outcome. Ten genes, including the
WNT5A gene, were selected in [31] based on the predictive
relationships among 587 genes: WNT5A, pirin, S100P, RET1,
MMP3, PHOC, MART1, HADHB, Synuclein, and STC3. We
apply the design procedure proposed in [32] to generate a PBN
possessing four constituent BNs. The method of [32] generates
BNs with given attractor structures and the overall PBN is de-
signed so that the data points, which are assumed to come from
the steady-state distribution of the network, are attractors in the
designed PBN. The regulatory graphs of these BNs can be found
in the supplementary materials. This approach is reasonable be-
cause our interest is in controlling the long-run behavior of the
network. The control objective for this ten-gene network is to
down-regulate the WNT5A gene, because WNT5A ceasing to
be down-regulated is strongly predictive of the onset of metas-
tasis. A number of other control studies based on the same data
have aimed to down-regulate the WNT5A gene. This model has
been used because the relation of WNT5A to metastasis is well
established and the binary nature of the up- or down-regulation
suits a binary model. A state is desirable if WNT5A = 0 and
undesirable if WNT5A = 1. As we mentioned earlier, the ap-
plication of the MFPT algorithm, or any of the other methods
developed for the control of gene regulatory networks, requires
the designation of desirable and undesirable states, and this de-
pends upon the existence of relevant biological knowledge. In
this example, the use of the state WNT5A has resulted from bio-
logical knowledge relating the state of WNT5A to metastasis in
melanoma tumors. Based on our objective, the cost of control is
assumed to be 1 and the states are assigned penalties according
to the following scheme:

r(u, j) =


0, if u = 0 and j ∈ D
5, if u = 0 and j ∈ U
1, if u = 1 and j ∈ D
6, if u = 1 and j ∈ U

which is the same cost structure as assumed in [7]. Since our
objective is to down-regulate the WNT5A gene, a higher penalty
is assigned for destination states having WNT5A up-regulated.
Also, for a given WNT5A status for the destination state, a
higher penalty is assigned when the control is active versus
when it is not. Note that the cost scheme reflects our objective;
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TABLE XI
∆P OPT

g AND ∆P
MFPT(γ )
g FOR ALL CONTROL GENES g IN MELANOMA

CASE STUDY

TABLE XII
COMPARISON OF CONTROL GENE RANKING BASED ON ∆P OPT

g ∗ , ∆P OPT
ĝ ,

AND ∆P OPT
ğ

in practice, the actual values would have to be assigned by a
physician according to his or her understanding of the disease.
Optimal and MFPT control policies are found for the melanoma-
related PBN. Table XI summarizes the amount of the shift in
the total probability mass of the undesirable states obtained by
each of these two methods. We apply the influence method to
predict the best control gene. We then compare the prediction of
the influence method with the prediction of the MFPT algorithm
and the optimal gene determined directly by the solution of a
dynamic programming algorithm. Table XII shows the ranking
of the genes based on direct solution of the optimal control
policy, the MFPT algorithm, and the influence method. The
MFPT method not only predicts the best control gene, but it also
exactly predicts the ranking of the control genes. As Table XII
shows, the influence method does a poor job on predicting the
best control gene.

VII. CONCLUSION

To overcome the computational impediments to optimal
stochastic control, we proposed an algorithm based on MFPTs
to address questions regarding the controllability in the context
of Markovian gene regulatory networks. We have compared its
performance with the results from optimal stochastic control.
The direct comparison has been limited to ten-gene networks
on account of the high complexity of the optimal algorithm. The
high accuracy and the low complexity of the MFPT algorithm
make it appealing for various applications: identification of the
best control gene, approximation of an optimal control policy,
controllability, and model-free intervention.
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