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Wireless Sensors

in Distributed
Detection Applications

An alternative theoretical framework
tailored to decentralized detection

he ability to detect events of interest is essential to the success of emerging sen-

sor network technology. Detection often serves as the initial goal of a sensing

system. Indeed the presence of an object has to be ascertained before a sensor

network can estimate attributes such as position and velocity. For systems

observing infrequent events, detection may be the prevalent function of the net-
work. Furthermore, in some applications such as surveillance, the detection of an intruder is
the sole purpose of the sensor system. In the setting where local sensors preprocess observa-
tions before transmitting data to a fusion center, the corresponding decision making prob-
lem is termed decentralized detection.
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Decentralized detection with fusion was an active research
field during the 1980s and early 1990s, following the seminal
work of Tenney and Sandell [1]. The application driver for this
research was distributed radar. The high cost of data transfers
at the time prompted system designers to quantize and com-
press data locally before information was relayed to the fusion
center, hence the decentralized aspect of the problem. The
goal was to design the sensor nodes and the fusion center to
detect the event as accurately as possible, subject to an alpha-
bet-size constraint on the messages transmitted by each sen-
sor node [2]-[4].

More recently, decentralized detection has found applica-
tions in sensor networks. Wireless sensor nodes are typically
subject to stringent resource constraints. To design an efficient
system for detection in sensor networks, it is imperative to
understand the interplay between data compression, resource
allocation, and overall performance in distributed sensor sys-
tems. Classical results on inference problems and decentralized
detection in particular can be leveraged and extended to gain
insight into the efficient design of sensor networks. These
results form a basis for much of the recent work on detection
in sensor networks.

THE CLASSICAL DECENTRALIZED

DETECTION FRAMEWORK

In the classical decentralized detection problem, a set of dis-
persed sensor nodes receives information about the state of
nature. Based on its observation, sensor node £ selects one of
Dy possible messages and sends it to the fusion center via a
dedicated channel. Upon reception of the data, the fusion
center produces an estimate of the state of nature by select-
ing one of the possible hypotheses. Evidently, a distributed
sensor system in which every sensor node transmits a partial
summary of its own observation to the fusion center is sub-
optimal compared to a centralized system in which the fusion
center has access to all the observations without distortion.
Nevertheless, factors such as cost, spectral bandwidth limita-
tions, and complexity may justify the use of compression
algorithms at the nodes. A generic decentralized detection
setting is illustrated in Figure 1. Resource constraints in the
classical framework are captured by fixing the number of
sensor nodes and further imposing a finite-alphabet con-
straint on the output of each sensor. This implicitly bounds
the amount of data available at the fusion center, as both the
number of nodes and the number of possible messages per
node are finite. Perfect reception of the sensor outputs is typ-
ically assumed at the fusion center. It is important to recog-
nize that once the structure of the information supplied by
each sensor node is fixed, the fusion center faces a standard
problem of statistical inference. As such, a likelihood-ratio
test on the received data will minimize the probability of
error at the fusion center for a binary hypothesis testing
problem. The crux of a standard decentralized inference
problem is to determine what type of information each sen-
sor should send to the fusion center.

EXAMPLE 1
Consider a detection problem where the fusion center must dis-
tinguish between two hypotheses, Ay and H;, based on L obser-
vations. Each observation consists of one of two possible signals,
$1 = —Sg = m, corrupted by additive noise

Yo=s5j+Ny, £=1,... L 1)
The observation noise is assumed to be a sequence of inde-
pendent and identically distributed (i.i.d.) Gaussian compo-
nents with zero-mean and variance o2. This implies that the
observed process conditioned on the true hypothesis is a
sequence of i.i.d. Gaussian random variables. Suppose that the
observations are only available at some remote sensor loca-
tions and assume that each sensor must quantize its own
observation to a single bit. One possible quantization rule for
the sensors is a function that returns the sign of the observa-
tion. The information reaching the fusion center is of the
form Uy = y(Yy) = sign(Yy). If we further assume that the
two hypotheses are equally likely, then an optimal decision
procedure at the fusion center for this special case is a majori-
ty rule on the received variables: Hj is selected if more zeros
are received and Hj is picked otherwise [5]. We emphasize
that while the optimality of the decision rule at the fusion
center is evident, it is more difficult to qualify the suitability
of the local quantization rules at the sensors.

A celebrated accomplishment in decentralized detection for
binary hypothesis testing is the demonstration that, for the clas-
sical framework, likelihood-ratio tests at the sensor nodes are
optimal whenever observations are conditionally independent
given each hypothesis [2]. This property drastically reduces the
search space for an optimal collection of local quantizers and,
although the resulting problem is not necessarily easy, it is
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[FIG1] Abstract representation of the classical decentralized
detection framework.
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amenable to analysis in many contexts. In general, it is reason-
able to assume conditional independence across sensor nodes if
the limited accuracy of the sensors is responsible for noisy
observations. However, if the observed process is stochastic in
nature or if the sensors are subject to external noise, this
assumption may fail. Without the conditional independence
assumption, the goal of finding the optimal solution to the
decentralized detection problem rapidly becomes computation-
ally intractable.

Even under a conditional
independence assumption, find-
ing optimal quantization levels at
the sensor nodes remains, in
most cases, a difficult task. This
optimization problem is known
to be tractable only under restric-
tive assumptions regarding the observation space and the topolo-
gy of the underlying network. The solution does not scale well
with the number of sensors except in some special cases, and it is
not robust with respect to priors on the observation statistics.

A popular heuristic method to design decentralized detection
systems is to apply a person-by-person optimization (PBPO)
technique. This technique consists in optimizing the decision
rule of one sensor at a time while keeping the transmission
maps of the remaining sensors fixed. The index of the sensor
node being optimized changes with every step. The overall per-
formance at the fusion center is guaranteed to improve (or, at
least, to not worsen) with every iteration of the PBPO algorithm.
Unfortunately, this algorithm does not necessarily lead to a
globally optimal solution. Other notable heuristics applicable to
the design of a decentralized detection system include the sad-
dle-point approximation method [6] and techniques based on
empirical risk minimization and marginalized kernels [7]. In
contrast to a majority of the work on decentralized detection,
the kernel method addresses system design for situations where
only a collection of empirical samples is available; the joint dis-
tributions of the sensor observations conditioned on the possi-
ble hypotheses need not be known.

For wireless sensor networks with a small number of nodes,
intuition regarding an optimal solution may be misleading.
Consider a scenario where observations at the sensor nodes are
conditionally i.i.d. The symmetry in the problem suggests that
the decision rules at the sensors should be identical, and identi-
cal local decision rules are frequently assumed in many situa-
tions. However, counterexamples for which nonidentical decision
rules are optimal have been identified [2]. Interestingly, identical
decision rules are optimal in the asymptotic regime where the
number of active sensors increases to infinity. For any reasonable
collection of transmission strategies, the probability of error at
the fusion center goes to zero exponentially as L grows unbound-
ed. It is then adequate to compare collections of strategies based
on their exponential rate of convergence to zero,

li log P (G1)
m ————.
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We use G;, as a convenient notation for a system configuration
that contains L sensors.

RESULT 1

Suppose that the observations are conditionally independent
and identically distributed. Then, using identical local decision
rules for all the sensor nodes is asymptotically optimal in terms
of error exponent [8].

This result was originally
proved by Tsitsiklis [8] through
an application of the Shannon-
Gallager-Berlekamp lower bound.
An alternative derivation can be
obtained using the encompassing
framework of large deviations.
Asymptotic regimes applied to

decentralized detection are convenient because they capture the
dominating behaviors of large systems. This leads to valuable
insights into the problem structure and its solution.

DECENTRALIZED DETECTION

IN WIRELESS SENSOR NETWORKS

The classical decentralized detection framework has limited
application to modern wireless sensor networks, as it does not
adequately take into account important features of sensor tech-
nology and of the wireless channel between the sensors and the
fusion center. In particular, finite alphabet restrictions on the
sensor outputs do not capture the resource constraints of cost,
spectral bandwidth, and power adequately for efficient design.
Furthermore, the assumption that sensor messages are received
reliably at the fusion center ignores the link variability intrinsic
to wireless communications.

Reevaluating the original assumptions of the classical
decentralize detection framework is an instrumental step in
deriving valuable guidelines for the efficient design of sensor
networks. Many recent developments in the field have been
obtained by studying the classical problem while incorporating
more realistic system assumptions in the problem definition.
The motivation underlying many of these new research initia-
tives is the envisioned success of future wireless sensor net-
works. An alternative theoretical framework tailored to
decentralized detection over sensor networks is starting to
emerge, as depicted in Figure 2.

Network architectures for distributed sensor systems come
in many different flavors. A carefully deployed system usually
forms a tree. In this configuration, the information propagates
from the sensor nodes to the fusion center in a straightforward
manner, following a unique deterministic path. The parallel
architecture, a subclass of the tree category where each node
communicates directly with the fusion center, has received
much attention in the decentralized detection literature. A dis-
tributed sensor system can also assume the form of a self-con-
figuring wireless sensor network. In such systems, nodes are
positioned randomly in an environment and then cooperate
with one another to produce a dynamic communication
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infrastructure for the resulting network. A reasonable abstrac-
tion for decentralized detection over sensor networks is one
where the sensors local to an event of interest are used for sens-
ing, and they transmit their information using a single hop or
multiple hops to a fusion center. The other sensors in the sys-
tem may be used as relays or routers. The fusion center is
responsible for final decision making and further relaying of the
information across the network if necessary.

Distributed sensing induces a natural tradeoff between per-
formance, communication, and complexity. Combining infor-
mation from neighboring nodes via in-network signal
processing can improve reliability and reduce the amount of
traffic on the network. On the other hand, the exchange of addi-
tional information could potentially yield better decisions. A
simple technique to exchange information in the context of
decentralized detection is proposed by Swaszek and Willett [9].
The authors explore the use of feedback, successive retesting,
and rebroadcasting of the updated decisions as a means of
reaching a consensus among sensors. Two modes of operation
are discussed: a fast mode, where a decision is reached rapidly,
and an optimum decision scheme that may require several
rounds of information sharing before a consensus is reached.
These two schemes illustrate well the natural tradeoff between
resource consumption and system performance, as the more
intricate scheme performs better.

Under a different setting, in-network signal processing is
studied by D’Costa et al. [10]. In their work, observations are
assumed to possess a local correlating structure that extends
only to a limited area. As such, the sensor network can be parti-
tioned into disjoint spatial coherence regions over which the
signals remain strongly correlated. The resulting partition
imposes a structure on the optimal decision rule that is natu-
rally suited to the communication constraints of the network.
Information is exchanged locally to improve the reliability of
the measurements, while compressed data is exchanged among
coherence regions. Under mild conditions, the probability of
error of the proposed classification scheme is found to decay
exponentially to zero as the number of measurements
approaches infinity.

EMERGING FRAMEWORK

A significant departure from the classical decentralized detec-
tion framework comes from the realization that wireless sensors
transmit data over a shared medium, the common wireless spec-
trum. A problem formulation that better accounts for the physi-
cal resource constraints imposed on the system is needed for
accurate performance evaluation. As discussed above, sensor
nodes are often subject to very stringent power requirements. A
limited spectral bandwidth and a bound on the total cost of the
system may further exacerbate the design process. A flexible and
adequate solution to distributed sensing should account for
these important factors. It is possible to extend the findings of
Result 1 to the case where system resources rather than the
number of sensors constitute the fundamental design limita-
tion. For instance, this resource budget may represent a sum-

rate constraint, a total power requirement, a bound on system
cost, or a combination thereof.

RESULT 2

Suppose that the observations are conditionally independent
and identically distributed. Then, under a global resource con-
straint, using identical transmission mappings for all the sensor
nodes is asymptotically optimal [11].

A necessary condition for this result to hold is that the num-
ber of sensor nodes must tend to infinity as the actual resource
budget grows without bound. This is usually the case, as the
amount of information provided by a single observation is
bounded and, consequently, the allocation of physical resources
devoted to the corresponding sensor should also be finite. This
result provides an extension to Result 1 and to the work by
Tsitsiklis [8]. In the current setting, the resource budget rather
than the number of sensor nodes forms the fundamental con-
straint on the sensor system. Moreover, the local decision rule y
need not be a finite-valued function, and the communication
channels between the sensor nodes and the fusion center need
not be noiseless. The optimality of wireless sensor networks
with identical sensor nodes is encouraging. Such networks are
easily implementable, amenable to analysis, and they provide
robustness to the system through redundancy.

Asymptotic analyses based on error exponents also have the
added benefit of decoupling the optimization across the sen-
sors. The sensor mappings can be designed according to a local
metric. For example, consider a Bayesian problem formulation
where the probability of error at the fusion center is to be mini-
mized. For wireless sensor networks with a large resource
budget and conditionally i.i.d. observations, prospective sensor
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[FIG2] Abstract representation of an alternative decentralized
detection framework.
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types should be compared according to their normalized
Chernoff information

1 . dQl,V *
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where a(y) is the expected

amount of system resources con-

sumed by a node of type y, and

Qj, is the induced probability

measure on the received informa-

tion Uy at the fusion center under

hypothesis H;. Intuitively, allocat-

ing a larger amount of resources

per node implies receiving detailed

information from each node at the

fusion center. On the other hand, for a fixed budget, a reduction in
resource consumption per node allows the system to operate with
more active sensors. The normalized Chernoff information
describes in mathematical terms how this tradeoff takes place:
Chernoff information divided by consumed resources.

We can extend the preceding result to the Neyman-Pearson
variant of the detection problem with little effort. In this latter
problem formulation, the normal operation of the system is Hj,
while H is considered a rare event. The prior probabilities on
Hy and H; are unknown. The function a(y;) denotes the
amount of resources consumed by sensor node ¢ under hypoth-
esis Hj, and the global resource budget is a constraint on the
behavior of the system under hypothesis Hy. In this case, the
normalized relative entropy

1
a(y)

plays the role of the normalized Chernoff information. Indeed,
in the Neyman-Pearson framework, prospective sensor types for
a sensor network with a large resource constraint should be
compared according to the normalized relative entropy.

When the observations are not conditionally i.i.d., the nor-
malized Chernoff information (or relative entropy) can no
longer be shown to be the right metric for optimizing the sen-
sor mappings. However, even in this case, the findings
described in Result 2 can be used as some justification to
decouple the optimization across sensors. In this context, it is
important to distinguish between the asymptotic results in the
Bayesian and Neyman-Pearson formulations in that, in the lat-
ter formulation, the normalized relative entropy can be shown
to be the right metric for optimizing the sensor mappings as
long as the observations are conditionally independent and
there are a large number of sensors of each type. The mini-
mization over A in (3) does not allow for a similar generaliza-
tion in the Bayesian setting.

D (Qo,y11Q1,y) )

DETECTION UNDER CAPACITY CONSTRAINT
The admissible rate-region of a practical system with a simple
encoding scheme may depend on the bandwidth, the signal

power, the noise density, and the maximum tolerable bit-error

rate at the output of the decoder. Specifying these quantities is

equivalent to fixing the sum-rate of the corresponding multi-

ple-access channel. A natural initial approach to the capacity-

constrained problem is to overlook the specifics of these

physical parameters and to constrain the sum-capacity of the
multiple-access channel available
to the sensors. Thus, the new
design problem becomes select-
ing the number of sensors (L) and
the number of admissible mes-
sages for each sensor (Dy) to opti-
mize system performance at the
fusion center, subject to the
capacity constraint

L
> Mogs(Do)] < R. ®)
=1
For the time being, we neglect communication errors in the
transmitted bits. Upon reception of the data, the fusion center
makes a tentative decision about the state of nature.

We know that using identical transmission functions for all
the sensor nodes is asymptotically optimal. In the framework of
Result 2, a discrete transmission mapping y* is an optimal
function if it maximizes the normalized Chernoff information,

*:ar max————
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As an immediate corollary to this result, it can be shown that
binary sensors are optimal if there exists a binary quantization
function y, whose Chernoff information exceeds half of the
information contained in an unquantized observation [11],
[12]. If the contribution of the first bit of quantized data to
the Chernoff information exceeds half of the Chernoff infor-
mation offered by an unquantized observation, then using
binary sensors is optimal. This corollary is not too surprising
in itself. However, the significance of this result is that the
requirements of the corollary are fulfilled for important class-
es of observation models [12]. Binary sensor nodes are opti-
mal for the problem of detecting deterministic signals in
Gaussian noise and for the problem of detecting fluctuating
signals in Gaussian noise using a square-law detector. That is,
in these scenarios, the gain offered by having more sensor
nodes outperforms the benefits of getting detailed informa-
tion from each sensor.

This attribute can be generalized to a very important property
that seems to be valid for a wide array of detection problems. In
most detection settings, including the ones specified above, the
number of bits necessary to capture most of the information
contained in one observation appears to be very small. In other
words, for detection purposes, the information contained in an
observation is found in the first few bits of compressed data. The
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performance loss due to quantization decays very rapidly as the
number of quantization levels increases. As such, message com-
pression only plays a limited role in overall system performance.
This property greatly simplifies quantizer design and system
deployment. A second property worth mentioning at this point
is, for conditionally i.i.d. observations, the diversity obtained by
using multiple sensors more than offsets the performance
degradation associated with receiving only coarse data from
each sensor [11], [12].

WIRELESS CHANNEL CONSIDERATIONS

Most of the early results on decentralized detection assume that
each sensor node produces a finite-valued function of its obser-
vation, which is conveyed reliably to the fusion center. In a wire-
less system, this latter assumption of reliable transmission may
fail as information is transmitted over noisy channels [13]. This
limitation is made worse by the fact that most detection prob-
lems are subject to very stringent delay constraints, thereby pre-
venting the use of powerful error-correcting codes at the
physical layer. Many recent research initiatives on decentralized
detection consist in incorporating the effects of the wireless
environment on the transmission of messages between the sen-
sors and the fusion center.

EXAMPLE 2

Consider a distributed sensor network akin to the one intro-
duced in Example 1, except that data must be transmitted over
parallel wireless communication channels. The fusion center
receives degraded information U, from sensor £ of the form

U =ye(Ye) + Wy, (™

where W, is additive Gaussian noise with distribution A/(0, 03,).
We study the simple situation where the additive noise is i.i.d.
across sensor nodes. The hypothesis testing problem consists of
deciding based on the received sequence {U;} whether the law
generating {Y;} is Py corresponding to hypothesis Hy, or P;
corresponding to hypothesis H;. We focus on the specific detec-
tion problem where the wireless sensor network is subject to a
total power constraint. The expected radiated power summed
across all the sensor nodes may not exceed a given constraint A,

L
Yoav) <A ®)

=1

where a(y;) > 0 represents the expected power used by sensor
node £. This problem falls in the general framework of Result 2.
Identical sensors are therefore optimal and system performance
is maximized by using the normalized Chernoff information as a
design criterion for individual sensors.

For the purpose of illustration, we study the class of nodes
where each unit retransmits an amplified version of its own
observation, y®) () = sy. We can express the expected radiated
power per sensor as a(y(s)) = 52(m2 + 02) and the correspon-
ding normalized Chernoff information as

1 00
— W log (ﬁoo \/Qo,ym W9y, (u)du)

m?2

= , 9
2(m? + o2)(s%02 + cru%) ©)

where m is the signal amplitude and o is the variance of the
observation noise. Figure 3 plots the normalized Chernoff infor-
mation, which is a monotone decreasing function of the radiat-
ed power in the present case.

Interestingly, although the problem definition of Example 2
constitutes a significant departure from the classical decentral-
ized detection framework, a similar phenomenon is observed.
Overall performance is optimized when the system uses as many
independent sensors as possible, giving each sensor a minimum
amount of system resources. The same conclusion can be
reached for a class of sensor nodes where each node compresses
its own observation to a one-bit summary message. Once again,
the tradeoff between the number of sensors and the amount of
resources allocated to each sensor seems to favor large networks
composed of many nodes. The use of a restricted class of sensors
in Example 2 underscores the difficulty of finding an optimal
transmission mapping for the sensors. In general, identifying
the best possible transmission map involves a non-convex opti-
mization problem over a space of measurable functions. Such
problems are typically very difficult to solve.

CORRELATED OBSERVATIONS

While the popular assumption that observations at the sensors
are conditionally independent is convenient for analysis, it does
not necessarily hold for arbitrary sensor systems. For instance,
whenever sensor nodes lie in close proximity of one another, we
expect their observations to become strongly correlated.
Different approaches have been employed to study the latter
problem, most of which focus on small sample sizes [14]. The
theory of large deviations can be used to assess the performance
of wireless sensor systems exposed to correlated observations
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[FIG3] Normalized Chernoff information for analog relay amplifiers.
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[15]. For differentiating between known signals in Gaussian
noise, overall performance improves with sensor density.

EXAMPLE 3

Consider the detection problem where observations become
increasingly correlated as sensor nodes are placed in closer
proximity. Mathematically, we adopt the same system as in
Example 2. However, the observation noise sequence is equiva-
lent to the sampling of a one-dimensional Gauss-Markov sto-
chastic process. The covariance function of the observation
noise is given by E[NyN;] = o2 p?®0 where d(k, ¢) is the dis-
tance between sensors & and £. When the sensors are equally
spaced at an interval of length d, the best possible error expo-
nent becomes

m? 1-p%
2(m? +0?) o (1— p) + 52021+ p)’

(10

Correlation degrades overall performance. Still, it is interest-
ing to note that performance improves with node density.
Although correlation and observation signal-to-noise ratio affect
the overall probability of error, they do not necessarily change
the way the sensor network should be designed. Systems with
many low-power nodes will perform well for the detection of
deterministic signals in Gaussian noise. We stress that there
exist situations where performance does not necessarily improve
with node density [15].

ATTENUATION AND FADING

If sensor nodes are to be scattered around somewhat randomly,
it is conceivable that their respective communication channels
will feature different mean path gains, with certain nodes possi-
bly having much better connections than others. Furthermore,
changes in the environment, interference, and motion of the
sensors can produce time-variations in the quality of the wire-
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[FIG4] Chernoff information for binary signaling, quaternary
signaling, and for the adaptive scheme where power allocation is
based on the state of the channel.

less channels. It is therefore of interest to quantify the impact of
fading on the performance of distributed sensor systems.

Chen et al. [16] modify the classical decentralized detection
problem by incorporating a fading channel between each sensor
and the fusion center. They derive a likelihood-ratio-based
fusion rule for fixed local decision devices. This optimum fusion
rule requires perfect knowledge of the local decision perform-
ance indices and the state of the communication channels over
which messages are sent. A decision rule based on maximum-
ratio combining and a two-stage approach inspired by the Chair-
Varshney decision rule are also analyzed. These concepts are
further researched by Niu et al. [17] for the scenario where
instantaneous channel state information is not available at the
fusion center. They propose a fusion rule that only requires
knowledge of the channel statistics. In general, having channel
state information at the sensors permits the usage of adaptive
transmission mappings where a sensor decides what type of
information to send based on the current quality of the channel.

EXAMPLE 4

We revisit the problem described in Example 2. This time, indi-
vidual wireless connections are subject to fading. The sensors
and the fusion center have perfect channel state information.
Assume that the total power budget per transmission is fixed.
We consider the specific case where the observation at each sen-
sor node is quantized to two bits. These bits are sent directly to
the fusion center over a Rayleigh fading channel. Depending on
the specific realization of its channel gain, sensor node ¢ decides
how much power should be allocated to the most significant bit
and how much power should be given to the second bit.

The optimal power allocation is found to vary significantly
with channel gain. At low signal-to-noise ratio, most of the
power is given to the most significant bit; while at higher signal-
to-noise ratio, power is split between the two bits. Figure 4 shows
the Chernoff information as a function of received signal power
for a binary signaling scheme, a quaternary signaling scheme
with uniform bit-power, and the optimal allocation scheme.
Clearly, channel state information at the sensor nodes increases
overall performance by adapting the signaling schemes of indi-
vidual sensor nodes based on the fade level of their respective
communication channels. For encoded systems, this property
entails using error-correcting codes with unequal bit protection.

NEW PARADIGMS

Recently, researchers have started to explore new paradigms for
detection over wireless sensor networks. These alternate points
of view offer vastly different solutions to the problem of distrib-
uted sensing. The disparity among the proposed solutions can
be explained in part by the perceived operation of future wire-
less sensor networks. Some researchers envision sensor net-
works to be produced as application-specific systems, giving the
designer much freedom on how to best use resources. Under
this assumption, every component of the network can be engi-
neered anew. Yet others believe that sensor networks will be
subject to standard protocols and specifications, effectively
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imposing a rigid structure on the system. The exchange of
information over future wireless networks may very well be
governed by specifications similar to the Internet protocol suite
(TCP/IP) or the Wi-Fi standard (IEEE 802.11). While more
restrictive, the later philosophy insures the inter-operability of
heterogeneous network components and it allows for mass pro-
duction and cost reduction.

CONSTRUCTIVE INTERFERENCE

Adopting the application-specific viewpoint, Mergen and Tong
[18] have proposed communication schemes for decentralized
detection where nodes take advantage of the physical layer to
transmit information efficiently and reliably. Their communica-
tion paradigms exploit the intrinsic broadcast nature of the
wireless medium. When complete channel state information is
available at the sensor nodes, it is possible for signals originat-
ing from various nodes to interfere constructively at the receiver
through beam-forming. In a wireless environment, the superpo-
sition of multiple signals is equivalent to adding their ampli-
tudes. This property can be employed to sum the local
likelihood ratios produced by individual sensors through the
wireless channel. The fusion center can then make a final deci-
sion by applying a threshold test on the amplitude of the
received aggregate signal. In this model, the wireless medium is
used both to communicate information to the fusion center and
to add signals coherently. This greatly reduces the spectral
bandwidth requirement for the system. Physical-layer schemes
are found to be asymptotically optimal as the number of sensors
increases, provided that the channels from the sensors to the
fusion center are statistically identical.

In related research initiatives, Liu and Sayeed [19] and
Mergen and Tong [20] propose communication schemes in
which sensor nodes transmit according to the type of their
observations. This strategy can be applied to decentralized
parameter estimation and decentralized detection alike. The
type-based multiple-access schemes lead to significant gains in
performance when compared to the conventional architecture
allocating orthogonal channels to the sensors. Based on the
level of the received signal, the fusion center is able to make a
decision. The broadcast nature of the wireless channel is
exploited in a similar fashion by Hong and Scaglione [21]. In
their work, the authors take advantage of the additive nature of
a wireless multiple-access channel to address the problems of
synchronization, cooperative broadcast, and decision making in
sensor networks. Under suitable channel conditions, construc-
tive interference techniques over multiple-access channels pro-
vide an interesting solution to the problems of decentralized
detection and decentralized parameter estimation. However,
certain technical issues such as symbol synchronization, phase
synchronization, and security need to addressed before these
techniques can be exploited effectively.

MESSAGE PASSING
A second paradigm that may reduce the need for spectral band-
width is based on local message passing. In the message-passing

approach, there is no designated fusion center and the goal is
for all the sensors involved in the decision process to reach a
consensus about the state of their environment. Every sensor
possesses the same prior probability distribution about the true
hypothesis and they share a common objective. They update
their tentative decision whenever they make a new observation
or when they receive additional information from a neighboring
wireless sensor. Upon computing a new tentative decision, each
sensor broadcasts its latest data to a randomly selected subset of
neighbors. Sensors can exchange messages in a synchronous or
asynchronous manner until consensus is reached. The design
problem is to find communication protocols for communication
between the sensors that results in an agreement in a reason-
able time. This should be achieved while respecting the con-
straints imposed on the communication structure and on the
system resources. Conditions for asymptotic convergence of the
decision sequence made by each sensor and for asymptotic
agreement among all the wireless nodes are of interest.

This line of work is heavily influenced by the pioneering
work of Borkar and Varaiya [22] on distributed estimation. To
facilitate analysis, the sensor network is modeled as a graph that
represents the connectivity of various nodes. Data generally
takes the form of a node’s conditional marginal probability dis-
tribution over the possible hypotheses. Advantages of the mes-
sage-passing paradigm include a simple communication
infrastructure, scalability, robustness to sensor failures, and a
possible efficient use of the limited system resources.

CROSS-LAYER CONSIDERATIONS

In the previous section, we presented local message-passing as a
way to mitigate the effects of path loss and fading in wireless
communications. Another way is for the nodes to exploit a mul-
tihop communication scheme where data packets are relayed
from sensor to sensor until they reach their respective destina-
tions. Although a multihop strategy necessitates more transmis-
sions, the non-linear attenuation intrinsic to wireless channels
insures overall savings.

If the data generated by the sensor nodes is to be conveyed
over a multi-hop packet network, a few key observations are in
order. In the context of decentralized detection, several studies
point to the fact that most of the information provided by an
observation can be compressed to a very few bits [11], [16].
Accordingly, the performance loss due to quantization decays
rapidly as the number of information bits per transmission
increases. Data packets carrying sensor information can then
be assumed to contain only a few bits without much loss of
generality. The exact number of bits per packet is unlikely to
be a significant factor in energy consumption in view of the
operations that take place at the onset of a wireless connec-
tion, and also taking into consideration the size of a typical
packet header. Indeed, the payload of a packet in these situa-
tions is nearly of the same size or even smaller than its header.
It is therefore safe to assume that once a communication link
is established between two sensor nodes, the information con-
tent of an observation can be transferred essentially unaltered.
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This characteristic leads to an all-or-nothing model for data
transmission akin to the one put forth by Rago et al. [23].

ENERGY SAVINGS VIA CENSORING AND SLEEPING

A generic sensor node comprises four subsystems: a sensing unit,
a microprocessor, a communication unit, and a power supply.
Once the components of a sensor node are fixed, the only way to
reduce the average power consumption at the node is to shut off
some of its units periodically. Assuming that the sensing unit is
coupled to the microprocessor and that the operation of the com-
munication unit is contingent on the microprocessor being
active, a wireless sensor node has three broad modes of operation.
It can be active, with all of its units powered up. Alternatively, it
can be in mute mode with its communication unit off, effectively
isolating itself temporarily from the rest of the network. Finally, it
can be sleeping with all of its units shut. In most sensor networks,
substantial energy savings may be achieved by having nodes com-
municate with the rest of the network only when necessary [23],
[24]. While censoring sensors is a straightforward scheme to save
energy, a less intuitive one consists in shutting off the sensor
node completely whenever the information content of its next few
observations is likely to be small.

Sensor nodes can take advantage of past observations and a
priori knowledge about the stochastic processes they are moni-
toring to save energy. A small hit in performance can result in
considerable energy savings for a decentralized detection sys-
tem. For example, a minimal increase in expected detection
delay can more than double the expected lifetime of the sensor
node. This result provides support for control policies in which
wireless sensor nodes enter long sleep intervals whenever the
information content of the next few observations is likely to be
small. Conceptually, the sensor node uses a priori knowledge
about the process it is monitoring together with its current and
past observations to reduce energy consumption. When the
event of interest becomes very unlikely, sensor nodes can afford
to go to sleep for an extended period of time, thus saving energy.
On the other hand, when in a critical situation, sensor nodes
must stay awake.

EXTENSIONS AND GENERALIZATIONS

The detection problems described thus far are static problems
in which the sensors receive either a single observation or a
single block of observations and a binary decision needs to be
made at the fusion center. Many extensions and generalizations
of this formulation are possible. In the dynamic setting, each
sensor receives a sequence of successive observations and the
detection system has the option to stop at any time and make a
final decision, or to continue taking observations. The simplest
problem in this setting is that of decentralized binary sequen-
tial detection. A decentralized version of binary sequential
detection, where sensors make final decisions at different stop-
ping times is studied by Teneketzis and Ho [25]. A more general
formulation of the fusion problem was introduced by Hashemi
and Rhodes [26], and a complete solution to this problem was
given by Veeravalli et al. [27].

A different binary sequential decision-making problem that first
arose in quality control applications is the change detection prob-
lem. Here the distribution of the observations changes abruptly at
some unknown time, and the goal is to detect the change as rapidly
as possible after its occurrence, subject to constraints on the false
alarm probability. A decentralized formulation of the change detec-
tion problem is considered by Crow and Schwartz [28] and
Teneketzis and Varaiya [29] with the sensors implementing individ-
ual change detection procedures. A general formulation of decen-
tralized change detection with a fusion center making the final
decision about the change is given by Veeravalli [30].

The design of optimal decision rules for decentralized detec-
tion problems is based on the assumption that the probability
distributions of the sensor observations are known. In many
applications, however, the distributions of the sensor observa-
tions are only specified as belonging to classes which are
referred to as uncertainty classes. The problem here is to design
decision rules that are robust with respect to uncertainties in
the distributions. A common approach for such a design is the
minimax approach where the goal is to minimize the worst-case
performance over the uncertainty classes. Extensions of the
minimax robust detection problem to the decentralized setting
are possible. Alternatives to robust detection when partial infor-
mation is available about the distributions, include composite
testing based on generalized likelihood ratios, locally optimal
testing for weak signals, and nonparametric detection.

DISCUSSION AND CONCLUDING REMARKS

Detection problems provide a productive starting point for the
study of more general statistical inference problems in sensor
networks. In this article we reviewed the classical framework for
decentralized detection and argued that, while this framework
provides a useful basis for developing a theory for detection in
sensor networks, it has serious limitations. The classical frame-
work does not adequately take into account important features
of sensor technology and of the communication link between
the sensors and the fusion center. We discussed an alternative
framework for detection in sensor networks that has emerged
over the last few years. Several design and optimization strate-
gies may be gleaned from this new framework.

The jointly optimum solution for the sensor mappings and
fusion rule is difficult to obtain, complicated, and it does not
scale well with the number of sensors. Attention should be
focused on good (suboptimum) solutions that are robust and
scalable. The asymptotic regime where the resource budget and
the number of sensors become large leads to such scalable,
tractable solutions. A performance metric based on error expo-
nents results in a decoupling of the optimization problem across
sensors, where transmission mappings are selected according to
a local criterion. The number of sensors and the sensor density
should be considered system design parameters that needs to be
optimized before deployment. This is particularly important
when the observations are conditionally dependent. Finally, the
modes of operation of a sensor (censoring and sleeping) should
be fully exploited to minimize resource consumption.
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While much progress has been made towards the under-
standing of detection problem in sensor networks using the
emerging framework described in this article, many interest-
ing questions remain. How do we obtain observation statis-
tics? How do we design adaptive and robust strategies that
work even when such statistics are incomplete or partially
known? What is the role of error-control coding applied to
the sensor outputs? Is it better to use additional bits to pro-
tect sensor outputs or to transmit more information about
the observations? What is the right architecture for the net-
work in the context of detection applications, decentralized
with fusion or distributed? How much do we gain by allowing
the sensors to communicate with one another in the fusion
configuration?
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