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Abstract—There is an ongoing effort to design optimal inter-
vention strategies for discrete state-space synchronous genetic
regulatory networks in the context of probabilistic Boolean net-
works; however, to date, there has been no corresponding effort
for asynchronous networks. This paper addresses this issue by
postulating two asynchronous extensions of probabilistic Boolean
networks and developing control policies for both. The first
extension introduces deterministic gene-level asynchronism into
the constituent Boolean networks of the probabilistic Boolean
network, thereby providing the ability to cope with temporal
context sensitivity. The second extension introduces asynchronism
at the level of the gene activity profiles. Whereas control policies
for both standard probabilistic Boolean networks and the first
proposed extension are characterized within the framework of
Markov decision processes, asynchronism at the profile level
results in control being treated in the framework of semi-Markov
decision processes. The advantage of the second model is the
ability to obtain the necessary timing information from sequences
of gene-activity profile measurements. Results from the theory of
stochastic control are leveraged to determine optimal intervention
strategies for each class of proposed asynchronous regulatory
networks, the objective being to reduce the time duration that the
system spends in undesirable states.

Index Terms—Asynchronous genetic regulatory networks, op-
timal stochastic control, semi-Markov decision processes, transla-
tional genomics.

1. INTRODUCTION

salient problem in genomic signal processing is the de-
Asign of intervention strategies to beneficially alter the dy-
namics of a gene regulatory network, for instance, to reduce
the steady-state mass of states favorable to metastasis in cancer
cells [1], [2]. To date, regulatory intervention has been studied
in the context of probabilistic Boolean networks (PBNs) [3],
specifically, the development of intervention strategies based
on associated Markov chains. Methods have progressed from
one-time intervention based on first-passage times [4], to using
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Fig. 1. Presentation of a regulatory graph and its corresponding oriented graph
for an arbitrary 3-gene Boolean network. (a) Regulatory graph; (b) oriented
graph.

dynamic programming to design optimal finite-horizon control
policies [5], to stationary infinite-horizon policies designed to
alter the steady-state distribution [6]. Common to all of these ap-
proaches is the assumption of synchronous timing. In this paper,
we relax that assumption and consider intervention in asyn-
chronous networks. This involves defining asynchronous proba-
bilistic Boolean networks and treating the problem in the frame-
work of asynchronous processes. We consider two approaches:
asynchronism relative to the genes themselves and asynchro-
nism relative to the state-space of gene-activity profiles.

In a rule-based regulatory network, a regulatory graph de-
fines the multivariate interactions among the components. From
here on, we use the term gene in place of any general biolog-
ical components, e.g., genes and proteins, involved in a regula-
tory network. The vertices of a regulatory graph are the genes or
nodes. A directed edge starts from a predictor vertex and ends
at an influenced vertex. All the vertices directly connected to
a node are its predictors. A regulatory rule defines the multi-
variate effects of predictors on the vertex. The node values are
selected from a set of possible quantization levels to facilitate
the modeling of gene interactions by logical rules. The discrete
formalism of rule-based regulatory networks is plausible for
many classes of biological systems. Strong evidences suggest
that the input-output relations of regulatory interactions are sig-
moidal and can be well approximated by step functions [7], [8].
Fig. 1(a) shows the regulatory graph of a hypothetical three-gene
network. Per the regulatory graph in Fig. 1(a), node (gene) x is
predicted by nodes (genes) z2. Node (gene) x; is the predictor
of both nodes (genes) x5 and 3.

To completely specify a class of regulatory networks, we need
to adopt an updating scheme. The choice of the updating scheme
plays a crucial rule in the dynamical behavior of the network.
Given the updating scheme, we can depict the dynamical evo-
lution of genes by translating the information of the regula-
tory graph and the regulatory rules into an oriented graph. The
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vertex of an oriented graph is a logical state, which is the aggre-
gated values of all the nodes at a given time. There is an edge
between two logical states of an oriented graph if a transition
can occur from one vertex to the other. For instance, Fig. 1(b)
shows the oriented graph corresponding to the regulatory graph
in Fig. 1(a). According to this oriented graph, whenever the
values of the nodes z1, =2, and z3 are 1, 0, and 1, respectively,
if all the nodes update synchronously, then the next logical state
is “010” (1 = 0, z2 = 1, and z3 = 0). A regulatory graph is
a static representation of interactions among biological compo-
nents, whereas an oriented graph shows the dynamics of inter-
actions among these components. We can practically observe
timing information related to the dynamical representation of
biological component interactions, that is, timing relative to the
oriented graph.

Two factors motivate the adoption of synchronous updating
schemes in rule-based regulatory networks: they are more
mathematically tractable and they require significantly less
data for inference. In particular, substantial time-course data
are required to characterize asynchronism. To date, the lack
of sufficient time-course data has prohibited the inference of
any realistic alternative asynchronous models; however, the
situation can be expected to improve in the future.

Synchronous abstraction is used under the implicit assump-
tion that asynchronous updating will not unduly alter the proper-
ties of a system central to the application of interest [9]. Clearly,
some properties will be altered. In Fig. 1(b), if all nodes are
not simultaneously updated, then the transition from 101 to 010
may not occur. Various potential issues with synchronous net-
works have been noted. For instance, synchronous abstraction
may produce spurious attractors in rule-based networks [10]. In
the same vein, deviation from synchronous updating modifies
the attractor structure of Boolean networks [11] and can change
their long-run behavior [12]. From a biological perspective, in-
teractions among genes causing transcription, translation, and
degeneration occur over a wide range of time-scales.

These observations suggest that we examine intervention in
asynchronous models. Since relaxing the synchronous assump-
tion will alter the long-run behavior of a regulatory model, we
need alternative approaches to influence network dynamics in
asynchronous models. In this paper we propose two new rule-
based asynchronous models and methods to derive effective in-
tervention strategies based on these models. The first model in-
troduces asynchronism in probabilistic Boolean networks at the
node level. The second model extends this approach by con-
sidering asynchronism at the logical-state level. Whereas the
first method is akin to currently proposed asynchronous models,
we will argue that the second approach is more suitable from a
translational perspective.

To date, asynchronism has been introduced into Boolean net-
works by updating each node based on its period. These studies
try to understand generic characteristics of asynchronous up-
dating schemes in randomly generated Boolean networks. To
accomplish this aim, a wide range of artificial asynchronous up-
dating protocols with different degrees of freedom in the selec-
tion of the updating period for each node has been postulated.

We categorize previously proposed asynchronous protocols
into two groups. In the first category, termed stochastic asyn-

chronous protocols, the updating period of each node is ran-
domly selected based on a given distribution [11]-[14]. In the
second category, termed deterministic asynchronous protocols,
the updating period of each node is fixed, and can differ from
one node to another [9], [12], [15]. There have also been studies
that consider both stochastic and deterministic asynchronous
protocols in an effort to investigate the predictability of Boolean
networks when asynchronous updating schemes are used in-
stead of synchronous ones [16], [17].

The study of both randomly generated and experimentally
validated Boolean networks reveals that stochastic asynchro-
nism has some limitations. Stochastic asynchronous updating
methods can significantly change the properties of oriented
graphs [9], [15]. Starting from wild-type gene expressions, nei-
ther the Boolean networks of [16] or [17] successfully predict
the anticipated long-run attractors of their networks. Earlier
studies indicate that constraining the degrees of freedom in
the asynchronous protocols can improve the predictability of
Boolean networks. More structured asynchronous protocols
predict the long-run behavior of Boolean networks more effec-
tively by representing their cyclic attractors [14], [17]. It must
be remembered that in all of these studies of asynchronism, the
timing protocols have been modeled mathematically without
biological verification. At this point, perhaps, all we can say is
that synchronism or asynchronism are modeling assumptions
and the choice in a specific circumstance depends upon the
available data and application.

When the context of a biological system is known, there is
a consensus that asynchronism in regulatory networks is deter-
ministic rather than random [9]; however, deterministic asyn-
chronous Boolean networks pose practical challenges. Even if
we can measure the level of each node in isolation while the
other nodes remain constant, at best, we could produce estimates
for updating periods. Owing to the effects of measurement noise
and the existence of latent variables, we cannot exactly specify
them. Focusing on the effects of latent variables, as is customary
when considering probabilistic Boolean networks, at best we
can estimate a set consisting of the most probable updating pe-
riods for each gene in the network; each set depending on the
(unknown) status of latent variables. A set of updating periods,
whose members are the deterministic periods of each node in
the regulatory network, defines the updating protocol of a deter-
ministic asynchronous Boolean network. This means that there
is a finite collection of deterministic asynchronous Boolean net-
works that defines the dynamics of the system. The updating pe-
riods of nodes depend on the temporal context of the biological
system, which can be influenced by latent variables. Having the
probabilities of selecting each context, the model selects one of
the constituent deterministic asynchronous Boolean networks at
each updating instant. The system evolves according to the se-
lected constituent deterministic asynchronous Boolean network
until its constituent network changes. This approach of intro-
ducing asynchronism into PBNs extends the currently favored
approach of studying asynchronism in regulatory models. The
proposed model, called a deterministic-asynchronous context-
sensitive probabilistic Boolean network (DA-PBN), is an exten-
sion of probabilistic Boolean networks in which the time scales
of various biological updates can be different. The term proba-
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bilistic emphasizes the random selection of a context, while the
term deterministic refers to the asynchronous protocol within
each context of the regulatory network.

Although DA-PBN provides a means to study intervention
using an asynchronous regulatory model, earlier research sug-
gests that the assumption of node asynchronism has drawbacks.
Although it appears not to have been directly mentioned in
previous studies, asynchronously updating the nodes changes
the global behavior of regulatory networks due to changing
their oriented graph, which models the dynamics of the system.
Along this line, it has been shown that small perturbations
do not settle down in a random Boolean network with node
asynchronism. Consequently, the asynchronous network is in
the chaotic regime while its synchronous counterpart is in the
critical regime [18]. The studies of experimentally validated
Boolean networks in [17] and [19] suggest that oriented graphs
of given Boolean networks provide accurate predictability,
whereas the oriented graphs of networks utilizing the same
Boolean rules with asynchronously updated nodes are very
complex and possess many incompatible or unrealistic path-
ways.

From these observations, we gather that an asynchronous
regulatory model should maintain the topology of the oriented
graph as specified by the logical rules governing the interac-
tions between genes. In other words, regulatory models should
accurately translate the logical relationships, i.e., the regulatory
graph, governing the interactions of nodes to the oriented graph
specifying the dynamics of the model. Moreover, they should
enable the analysis of the temporal behaviors of biological sys-
tems. Since our objective here is to alter the long-run behavior
of biological systems via an effective intervention strategy,
our regulatory models should not only possess the previous
two characteristics, but they should also be inferable from the
empirical data.

Due to the aforementioned observations, we propose a
second asynchronous regulatory network model, termed
semi-Markov asynchronous regulatory networks (SM-ARN).
In the SM-ARN, the asynchronism is at the logical state instead
of the node. In the SM-ARN model, the empirically measurable
timing information of biological systems is incorporated into
the model. This measurable timing information determines
the typical time delay between transitions from one logical
state to another. Since the order of updating nodes and their
relative time delays depends on the levels of other regulatory
components, estimating the updating time of each gene in
isolation, and independent of the values of other genes, is
highly problematic, if not impossible. Time-course data enable
the estimation of intertransition times between logical states,
not the updating time of each node, and it is at the logical-state
level that we will introduce asynchronism.

An SM-ARN is specified with two sets of information. The
first set determines the rule-based multivariate interactions
between genes. Considering simultaneous updating, we can
specify the oriented graph of the model based on this informa-
tion. In other words, the first set of information specifies a PBN,
which is generated from a given set of Boolean functions for
updating each gene. The generated oriented graph guarantees
the predictability of the rule-based topology. The second set of

information consists of the distributions of intertransition inter-
vals between any two logical states that are directly connected.
These values can be empirically inferred from time-course data.

We show that the design of optimal intervention strategies
for the DA-PBN model can be mapped to the existing infinite-
horizon intervention methods based on Markov decision pro-
cesses (MDP) [6], although its corresponding oriented graph
has a larger state space. To design optimal intervention strate-
gies based on the SM-ARN model, we apply results from the
theory of semi-Markov decision processes (SMDP). Appropri-
ately formulating the problem of intervention in the SM-ARN
model, we devise an optimal control policy that minimizes the
duration that the system spends in undesirable states.

In Section II, we define a DA-PBN and show that a DA-PBN
can be represented as a Markov chain. Thereafter, using Markov
decision processes, we design optimal intervention strategies to
control the dynamical behavior of the model in the long run.
Reduction of the aggregated probability of undesirable states is
the objective of an intervention strategy. The SM-ARN model is
introduced in Section III. Having the objective of reducing the
time that the regulatory network spends in undesirable states, we
derive optimal intervention strategies for both general and spe-
cial intertransition time distributions based on semi-Markov de-
cision processes. As a numerical study, in Section IV, we apply
the SM-ARN intervention method to control a regulatory model
of the mammalian cell-cycle.

II. INTERVENTION IN DETERMINISTIC-ASYNCHRONOUS
CONTEXT-SENSITIVE PBNS

A DA-PBN is an extension of probabilistic Boolean network
in which different time-scales for various biological processes
are allowed. Each node, or biological component, is updated
based on an individual period, which may differ from one com-
ponent to another. Yet, the updating period of each node is fixed
given the context of the network. The intent of context-sensi-
tivity is to incorporate the effect of latent variables not directly
captured in the model. The behavior of these latent variables
influences both regulation and updating periods of nodes. The
uncertainty about the context of a regulatory network resulting
from latent variables is captured through a probability measure
on the possible states. The exact updating periods and functions
of nodes cannot be practically specified. At best, we can es-
timate the set of possible updating periods and corresponding
updating functions for each node. As a stochastic Boolean net-
work model with asynchronous updates, a DA-PBN expands the
benefits of traditional PBNs by adding the ability to cope with
temporal context as well as regulatory context.

Introducing asynchronism at the node level follows the ex-
isting approaches to study asynchronous regulatory networks.
Our objectives for introducing asynchronism via the DA-PBN
model are twofold. First, we show that the synchronous for-
malism of PBNs can be relaxed to introduce asynchronous
PBNs. Second, we provide a methodology to derive optimal
intervention strategies for the DA-PBN model.

A. Deterministic-Asynchronous Context-Sensitive PBN

As with a synchronous PBN, in a DA-PBN, node values are
quantized to a finite number of levels. In the framework of gene



FARYABI et al.: OPTIMAL INTERVENTION IN ASYNCHRONOUS GENETIC REGULATORY NETWORKS 415

regulation, a DA-PBN consists of asequence V' = {z;};_,,0of n
nodes, where z; € {0,1,...,d—1}.Bachz;(i = 1,...,n) rep-
resents the expression value of a gene selected from d possible
quantization levels. It is common to mix terminology by refer-
ring to x; as the ¢th gene. A DA-PBN is composed of a collec-
tion of N constituent deterministic-asynchronous Boolean net-
works (DA-BN). In a DA-PBN, the active DA-BN changes at
updating instants selected by a binary switching random vari-
able. A DA-PBN acts like one of its constituent DA-BNs, each
being referred to as a context, between two switching instants.

The Ith DA-BN (V, f;,©;) is defined by two vector-valued
functions. The vector-valued function f; consists of n predic-
tors, f; = (fin,---, fin), where fi; : {0,...,d — 1}" —
{0,...,d — 1} denotes the predictor of gene 7. The vector-
valued function ©; consists of n updating components, @; =
{bi1,...,01,}.Each function 6;; : N — {0, 1} is defined with a
pair of fixed parameters, (a;;, by; ). The parameter a;; € N spec-
ifies the updating period of gene 7, when context [ is selected.
The parameter b;; € {0, ...,a;; — 1} further differentiates the
exact updating instant of each gene within its updating period.
The two degrees of freedom in 6;; are sufficient to assign any
instant of time as the updating time of gene ¢

Bui(t) = {(1)

At each updating instant a decision is made whether to switch
the current constituent DA-BN. The switching probability ¢ is
a system parameter. If the current DA-BN is not switched, then
the DA-PBN behaves as a fixed DA-BN and genes are updated
synchronously according to the current constituent network

ift = bli
otherwise.

(mod ay;)

ey

_fi (D), wa(1), i Bt 1) =1
$i<t+1)_{azli(t)7 it Ot +1) = 0.

@)

If a switch occurs, then a new constituent network is randomly
selected according to a selection probability measure {rl};\;l.
After selecting the new constituent network [, the values of the
genes are updated using (2), but with f; and ©; instead.

We consider PBNs with perturbation, in which each gene may
change its value with small probability p at each time unit. If
7vi(t) is a Bernoulli random variable with parameter p then the
value of gene 4 could be perturbed at each dynamical step as
follows:

zi(t+1) = z;(t) vt + 1). 3)

Such a perturbation model enables us to capture the realistic
situation where the activity of a gene undergoes a random al-
teration. As we will see later, in addition, it guarantees that the
Markov chain modeling the oriented graph of DA-PBN has a
unique steady-state distribution.

To date, PBNs have been applied with d = 2 and d = 3. If
d = 2, then the constituent networks are Boolean, with O or 1
meaning OFF or ON, respectively. The case where d = 3 arises
when we consider a gene to be down-regulated (0), up-regu-
lated (2), or invariant (1). This situation commonly occurs with

cDNA microarrays, where a ratio is taken between the expres-
sion values on the test channel (usually red) and the base channel
(usually green). The binary or ternary cases are considered in
numerical studies [20]. Although we focus on the binary case
in our numerical studies, the methodologies developed in this
paper are applicable to any general d. Indeed, the goal of this
paper is to introduce frameworks for optimal intervention in
asynchronous genetic regulatory networks.

B. Stochastic Control of a DA-PBN

Although the definition of a DA-PBN enables us to study
the behavior of a regulatory network in the long run, it does
not provide a systematic means for its alteration. We propose
a synchronization method for DA-PBNs. The synchronization
method provides a synchronous version of a DA-PBN’s ori-
ented graph. The synchronized oriented graph sets the stage for
designing optimal intervention strategies to alter the dynamical
behavior of DA-PBNSs.

To study the dynamical behavior of a PBN, the gene-activity
profile is considered as the logical state of its oriented graph.
The gene-activity profile (GAP) is an n-digit vector z(t) =
(z1(t),...,x,(t)) giving the expression values of genes at time
t, where z(t) € {0,...,d — 1}" [7]. There is a natural bijec-
tion between the GAP, z(t), and the decimal number z(#) taking
values in W = {0,...,d"™ — 1}. The decimal representation
of a GAP facilitates the visualization of the intervention in a
DA-PBN.

In the synchronization of a DA-PBN, we augment the GAP
of the network and define the augmented logical state, Z(t). To
synchronize the oriented graph of a DA-PBN, we encode all the
dynamical steps within an interval of duration equal to the least
common multiple of all the updating periods. The least common
multiple of all the updating periods a;;, fori € {1,..., N} and
je{l,....n}

f:LCM(all,...,aln,...,aNl,...,aNn) (4)
defines the number of a new nodes, m, added to the GAP. The
integer m is the smallest integer larger than the logarithm to the
base d of ¢

m = log,(6)] )

The value of m determined by (5) is a nonoptimal number of
nodes required to distinguish all the time steps within one &.
Hence, the augmented logical state of a DA-PBN is composed
of the GAP and mn new nodes, along with the context x(t) of the
DA-PBN at each time step ¢

z(t) = (x1(8), s 20 (), Tnr1(t), - - o, Tpam (t), (1)) . (6)

Fig. 2 shows the time instants at which the genes of a hypo-
thetical three-gene DA-PBN are updated. The updating function
611 of 1 has the parameters (a;1 = 2,b;; = 1). Similarly, the
parameters of the updating functions of genes zo and z3 are
(a2 = 2,bi2 = 0) and (a;3 = 3,b;3 = 0), respectively. The
pattern of updates is repeated after each 6 updating instants. We
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Fig. 2. Schematic of updating instants of genes of a DA-PBN with (a;; =
2,b;y = 1), (a2 = 2,bip = 0), and (a;3 = 3,b;3 = 0). The pattern of
updates is repeated at each LCM ¢ shown with a dashed-line box. Each marker
indicates the instant in which the corresponding gene updates its value.

can use three extra nodes to code all the instants in the duration
of £ = 6.

The evolution of a synchronized oriented graph with its aug-
mented logical state can be modeled by a stationary discrete-
time equation

2t+1)=f((t),w(t), for t=0,1,..., @)
where state 2(t) is an element of the state space S = {(s,¢) :
s€{0,1,...,d"*™ —1} Ac € {1,..., N}}. The disturbance
w(t) is the manifestation of uncertainties in the DA-PBN. It
is assumed that both the gene perturbation distribution and the
network switching distribution are independent and identical for
all time steps t.

Hence, the n-gene DA-PBN is modeled as a synchronous
context-sensitive PBN with augmented state space. The oriented
graph of a synchronous context-sensitive PBN with n+m nodes
is a Markov chain with (d"*™ x N)) states. Hence, the oriented
graph of the system described by (7) can be represented by a
Markov chain [21]. Originating from an augmented logical state
1, the successor augmented logical state j is selected randomly
within the set S according to the transition probability

pij 2 P{a(t+1) = jla(t) = i} @®)

for all 7 and 7 in S. Gene perturbation insures that all the states
in the Markov chain communicate with one another. Hence, the
finite-state Markov chain is ergodic and has a unique invariant
distribution equal to its limiting distribution [4], [22].

Now that the dynamical behavior of a DA-PBN is described
by a Markov chain, the theory of Markov decision processes
(MDP) can be utilized to find an optimal sequence of interven-
tions [6]. Reducing the likelihood of visiting undesirable states
in the long run is the objective of the intervention problem. In
the presence of external controls, we suppose that the DA-PBN
has a binary control inputs: ¢1 (), . . ., co(%). A control ¢;(t) can
take binary values in {0,1} at each updating instant ¢. The dec-
imal bijection of the control vector, u(t) € C = {0,1,...,2% —
1}, describes the complete status of all the control inputs. The
external control alters the status of the control gene, which can
be selected among all the genes in the network. If the sth control
at decision epoch ¢ is on, ¢;(t) = 1, then the state of the con-
trol gene is toggled; if ¢;(t) = 0, then the state of the control
gene remains unchanged. In the presence of external control,

the system evolution in (7) can be modeled by a discrete-time
equation
2t+1) = f(E@1),u(t),w(t)) for t=0,1,... (9
Optimal intervention in the DA-PBN is then modeled as a
Markov decision process (MDP) with (d"t™ x N) states, the
state 2(t) at any time step ¢ being an augmented logical state.
Originating from state ¢, the successor state j is selected ran-
domly within the set S according to the transition probability
A . s )
piy(u) 2 P(E(t+1) = jl2(t) = dyu(t) = ). (10)
We associate a reward-per-stage, 7 (7, u, j), to each interven-
tion in the system. The reward-per-stage could depend on the
origin state 7, the successor state j, and the control input u. We
also assume that the reward-per-stage is stationary and bounded

for all states 4, j, and all controls u. We define the expected im-
mediate reward earned in state ¢, when control w is selected, by

(i,u) =Y pij(u)r(i, u, ).

JES

Y

The reward of a transition from a desirable state to an unde-
sirable state is the lowest, and the reward of a transition from
an undesirable state to a desirable state is the highest. A state in
which metastatic biological components are active is considered
to be undesirable.

To define the infinite-horizon problem, we consider the dis-
counted reward formulation. The discounting factor, A € (0, 1),
insures the convergence of the expected total reward over the
long run [23]. Including a discounting factor in the expected
total reward signifies that the incurred reward at a later time is
less significant than the incurred reward at an earlier time. In the
case of cancer therapy, the discounting factor attempts to capture
the fact that obtaining treatment earlier is better than postponing
treatment to a later stage.

Among all admissible policies II, the infinite-horizon MDP
methodology identifies a policy 7 = {gg, 4y, ...}, where p; :
S — C is the decision rule at time step ¢ that maximizes the ex-
pected total discounted reward. The infinite expected total dis-
counted reward, given the policy 7 and the initial state ¢, is

N-—-1
Je(i) = lim B { S Aw,ut(z‘),j)} SN
t=0

The vector, J ., of expected accumulated-rewards for all the log-
ical states in S is called the value function. We seek a policy that
maximizes the value function for each state 7. An optimal con-
trol policy, 7*, is a solution to the infinite-horizon MDP with
discounted reward

Vi e S.

7% (i) = arg max J (i), (13)

well
The corresponding optimal value function is denoted by J*. As-
suming there is only one control gene as an example, an optimal
policy 7* determines a stationary decision rule g* which speci-
fies whether the status of the control gene should be toggled or
not at each state 2 € S.
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A stationary policy is an admissible policy of the form =7 =
{#, p,...}. The vector J, is its corresponding value function.
The stationary policy 7 is optimal if .J,,(¢) = J*(¢) for any state
1. It is known that an optimal policy exists for the discounted in-
finite-horizon MDP problem, and it is given by the fixed-point
solution of the Bellman optimality equation. Moreover, an op-
timal policy determined by the Bellman optimality equation is
also a stationary policy [23].

The intervention problem in a DA-PBN has a discrete-time
formulation. On the contrary, as we will show in the next section,
the intervention problem in an SM-ARN has a continuous-time
formulation. The objective of intervention in the discrete-time
problem is to reduce the chance of visiting undesirable states.
Since the time between two consecutive epochs of a DA-PBN
is fixed, the effect of intervention is equivalent to the reduction
of the time spent in undesirable states.

III. INTERVENTION IN SEMI-MARKOV ASYNCHRONOUS
REGULATORY NETWORKS

According to the discussion in the Introduction, assuming
asynchronism at the node level for Boolean networks has prac-
tical and theoretical impediments which may prevent indepen-
dent node updating to serve as a basis for designing effective
therapeutic intervention strategies. In particular, the delay and
the order of updating a given gene is only observable with re-
spect to the activity level of other genes and proteins involved in
the regulatory process. Thus, it is impractical to study the alter-
ation of one specific gene over time, while keeping the levels
of all other genes in the model constant. Practically, we can
measure GAPs at each observation instant and the intertransi-
tion interval between two GAPs can be modeled by a random
variable. Introduction of the SM-ARN model is a reasonable
modeling strategy to build regulatory networks via the assump-
tion of asynchronously updated logical states. SM-ARN models
can practically be inferred from observing biological systems.
Using these observations, we can potentially design better inter-
vention strategies.

The results of [17] and [19] implicitly suggest that rule-based
regulatory models should maintain the topology of the oriented
graph generated by experimentally validated predictors of
genes, as if the genes are coupled. Hence, we define the
oriented graph of an SM-ARN based on the experimentally
validated predictors when the genes are updated simultane-
ously. To this end, we define a PBN for any SM-ARN based on
predictors of genes in the model. This PBN in turn specifies the
oriented graph of the SM-ARN.

The SM-ARN model is an application of semi-Markov
processes to model rule-based asynchronous networks with
the state space consisting of GAPs. Semi-Markov processes
constitute a generalization of Markov chains in which the time
intervals between transitions are random [24]. We first define
the SM-ARN model. Then, we devise optimal intervention
methods using Semi-Markov decision processes. To this end,
we consider the general formulation of the control problem,
as well as three special cases with postulated intertransition
interval distributions.

Z(ty)
y
Z(t1) =j —
i
]
2ty = Thet = toet -tk
4
»t
1:k tk+1

Fig. 3. Schematic of transition in SM-ARN with two consecutive epoch times
t) and ty4q. The intertransition interval, 741, is the sojourn time in state ¢
prior to the transition to state j.

A. Semi-Markov Asynchronous Regulatory Networks

For consistency with DA-PBNs, we use the same notation to
define SM-ARNs. We consider a sequence of n genes, V' =
{z;}!_,, representing the expression values of genes involved
in the model. The expression value, z;(t), of gene ¢ at time ¢ is
selected from d possible quantization levels. We define the states
of an SM-ARN as the gene-activity profiles of the nodes in V.
As in Section II, the GAP can be considered to be an n-tuple
vector £(t) = (z1(t),...,x,(t)) giving the values of genes at
time ¢, where () € {0,...,d — 1}™. The decimal bijection
of the GAP is called z(t). At each time ¢ € R™, the state, 2(#),
of the SM-ARN is selected from the set of all possible states,
w ={0,...,d" — 1}.

Considering two consecutive epoch times ¢ and ¢x11 per
Fig. 3, the state of the SM-ARN for all the times ¢, <t < tr41
is z(t) = 7. Attgy1, the model enters a new state z(tg41) = j.
If 73,4+1 is the time spent in state ¢ prior to transition to state j,
then we have 7,41 = tx41 — . In the SM-ARN model, this
intertransition interval is modeled with a non-negative random
variable with probability distribution

Pij(’l') =P (’T‘k+1 S T|Z(tk) = i,Z(tk+1) = J) . (14)

According to (14), the probability distribution of sojourn time
in the current state ¢ prior to transition to the successive state
7 could depend on both states. We require the intertransition
interval distributions, P;;(7), for any two directly connected
states as one of the two sets of information needed to define
an SM-ARN. Time-course data could provide the information
leading to these distributions.

Borrowing the methodology proposed in [3], we proceed to
define the embedded-PBN of an SM-ARN. The embedded-PBN
of an SM-ARN models the probabilistic rule-based connections
of gene interactions and constitutes the other set of information
required for specification of an SM-ARN. The embedded-PBN
specifies the oriented graph of the SM-ARN based on the predic-
tors of the genes. The oriented graph of an SM-ARN is a directed
graph whose vertices are the states of the SM-ARN in W, and
for which there is an edge between any two directly connected
states. The weight of each edge is the transition probability be-
tween two vertices connected by that edge.

Let {f l}fvzl be the set of N realizations of the embedded-
PBN. If the genes are coupled, then at each simultaneous up-
dating instant, one of the /N possible realizations of the em-
bedded-PBN is selected. Each vector-valued function f; has the
form f; = (fi1,..., fin). Eachfunction f;; : {0,...,d—1}" —
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{0,...,d—1} denotes the predictor of gene 7, when the realiza-
tion [ is selected. At each simultaneous updating instant a deci-
sion is made whether to switch the context of the network. The
switching probability ¢ is a system parameter. If at a particular
updating instant, it is decided that the realization of the network
should not be switched, then the embedded-PBN behaves as a
fixed Boolean network and simultaneously updates the values
of all the genes according to their current predictors. If it is de-
cided that the network should be switched, then a realization
of the embedded-PBN is randomly selected according to a se-
lection distribution {r;}1 . After selecting the vector-valued
function f;, the values of the genes are updated according to the
predictors determined by f;,. We assume that the probability of
selecting the ith realization, 7;, of the embedded-PBN is known
[3]. In addition, we allow perturbations in the embedded-PBN,
whereby each gene may change its value with a small proba-
bility p at each updating instant.

The graph specifying the relationships among the GAPs of
an embedded-PBN, defined as above, can be represented as a
Markov chain [3]. On the other hand, the graph of the rela-
tionships among the GAPs specified by the embedded-PBN is
the regulatory graph of the SM-ARN. Originating from a state
z(tr) = 1, the successor state z(tr+1) = j is selected randomly
within the set VW according to the transition probability p;; de-
fined by regulatory graph of the SM-ARN

pij = P (2(trq1) = jlz(te) =), foralld,j € W. (15)
In other words, the oriented graph of an SM-ARN is the same
as its regulatory graph. However, the update of states in the ori-
ented graph of an SM-ARN occurs on various time-scales ac-
cording to intertransition interval distributions. Therefore, the
oriented graph of the SM-ARN defined by the embedded-PBN
maintains the topology of the oriented graph generated by the
experimentally validated predictors of genes.

Gene perturbation ensures that all the states of the SM-ARN
communicate in the oriented graph. Hence, the fraction of time
that the SM-ARN spends in state ¢ in the long run can be com-
puted [24]

TI',L'F(i)

2 i=0 ™7 (4)

Here, {; }‘Liza ! is the steady-state distribution of the GAP in the
Markov chain representing the oriented graph of the SM-ARN,
and {F(z)}flzo_ ! is the expected sojourn time in state 4, which
can be computed from the information in (15) and (14). One
can easily verify that the fraction, p;, of time spent in state ¢ in
the long run will be equal to the fraction, 7;, of the transitions
to state ¢ if all the nodes are synchronously updated.

pi = w.p. 1. (16)

B. Stochastic Control of an SM-ARN

In considering the stochastic control of an SM-ARN, as in
Section II-B, we suppose that the SM-ARN has « binary control
inputs, and u(t) € C describes the complete status of all the
control inputs at time ¢. In the presence of external controls, the
SM-ARN is modeled as a semi-Markov decision process. At any
time ¢, the state z(#) is selected from V. Originating from state

7 —
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Updating Instants

Fig. 4. Schematic of transitions in a hypothetical three-gene SM-ARN along
with their epoch times and reward during each sojourn interval. The total reward
between two epoch times ¢, and ¢ is less than the total reward between two
epoch times t5 and .

1, the successor state j is selected randomly within the set W
according to the transition probability
A . .
pij(u) = P (2(tey1) = jlz(te) = d,u(te) =u) (A7)
for all 7 and 7 in WV and for all w in C. Moreover, the intertran-
sition interval distribution is also a function of control

Pyj(r,0) 2 P (rigr < 7la(te) = i, 2(tkg) = Joulte) = u)

(18)
for all states 7 and 7 in WV, and all controls « in C. The external
control alters the status of the control gene, which can be se-
lected among all the genes in the network. If the sth control at
decision epoch ¢ is on, ¢;(t) = 1, then the state of the control
gene is toggled; if ¢;(t) = 0, then the state of the control gene
remains unchanged. We associate a rate of reward r(z(t), u(t))
for sojourning in state z(¢) per unit of time while the control is
u(t). Considering consecutive epoch times ¢ and ¢ 1, the rate
of reward 7(z(t),u(t)) is constant for all ¢, < t < tgyq. Itis
equal to r(i,u), whenever z(tg) = i and u(tx) = u. The rate
of reward of undesirable states is lower than those for desirable
states. We also consider the cost of applying a control action,
which reduces the rate of reward of each state.

Fig. 4 shows several epoch times of a hypothetical three-gene
SM-ARN. We assume that the undesirable states are the ones
with an up-regulated gene in the most significant position in
the GAP. We then assign higher rates of reward to desirable
states O through 3 compared to the undesirable states 4 through
7. Given that r; and 79 are the rates of reward when the model
is in undesirable and desirable states, respectively, the reward,
(t2 — t1)r2, gained between two epoch times ¢; and ¢5 is less
than the reward, (t¢ — t5)r2, gained between the two epoch
times t5 and tg. We desire an effective intervention policy that
maximizes the accumulated reward over time. In other words,
we seek a control policy to reduce the time spent in undesirable
states with lower rate of reward compared to desirable states
with higher rate of reward. In practice, the rates of reward have
to capture the relative preferences for the different states. For
instance, the reward gained between the two epoch times tg and



FARYABI et al.: OPTIMAL INTERVENTION IN ASYNCHRONOUS GENETIC REGULATORY NETWORKS 419

t7 may need to be smaller than the reward gained between the
two epoch times ¢; and Z,. In order to penalize the sojourn time
in undesirable states, the ratio of 5 to 1 should be large enough
to capture the relative preference for the desirable states. If the
intervals between any two epoch times in Fig. 4 were equal,
then the problem of intervention in an SM-ARN would reduce to
the intervention problem in PBNSs. In this intervention problem,
the objective is to reduce the number of visits to undesirable
states, because the sojourn time in all states is the same, so that
reducing the number of visits to undesirable states is directly
equivalent to reducing the amount of time spent in these states.

For the reasons articulated in Section II-B, we consider a dis-
counted reward formulation to define the expected total reward.
If A € (0,1) is the discounted factor per unit time and we divide
the time unit to small intervals ¢, then at each interval the dis-
count is \/§, given the initial value is 1. Hence, (1 — (A/§))%*
represents the discount over ¢ units of time. As § goes to zero,
the discount goes to e,

Among all admissible policies II, the SMDP methodology
finds a policy 7 = {mg, ty, ...}, where u; : W — C is the
decision rule at time ¢, that maximizes the expected total dis-
counted reward. The infinite-horizon expected total discounted
reward, given the policy 7 and the initial state i, is

tn
Jei) = Jim I / My (), ul)) dt S (19)
5

where ¢y is the NVth epoch time. We seek a policy n* that max-
imizes the value function for each state 2. An optimal control
policy is a solution of the SMDP with discounted reward

(i) = argmax J (i), Vi€ S. (20)

well

Intervention using the policy 7* increases the time spent in de-
sirable states determined through appropriate assignment of rate
of rewards 7(z(t), u(t)) to each state-control pair (z(t), u(t)).
A general solution for this optimization problem is presented
in [23]. To make the paper self-contained, we next present the
steps of the solution.

Using the intertransition interval distributions in (18) and the
transition probabilities in (17), one can define the joint transition
distribution of an intertransition interval and the successor state,
given the current state and control

Qij(T,u) =P {71 <7, 2(trgr) =jl2(te) =1, u(tr) =u} .

21
Consequently, the expected reward, R(7,u), of a single transi-
tion from state z(¢x) = 7 and control u(¢x) = u can be com-
puted

T

R(i,u)=FE /e_)‘tr(i,u)dt
0

(22)

w2 AT
EZ:O/ Qi (dr,u)

where |W] is the cardinality of the state space.

There is a recursive relation between the value function Jfr\;v
of stage N and the value function J ! of stage (N — 1)

150 = X8| [ e e deetio) = i
k=0 i
— R i io(1))
W) °2

+Z/ Qi (dr, po (D) INTE () (23)

where z(t;) = 2. The (N — 1)-stage policy 7 —1 is the subset
of the N-stage policy mn = {po, 1, .., uN—1} When pg is
excluded. Equation (23) can be rewritten as

W
IR (6) = R (i, poi +Zmu po(0) INTE () (24
where m;;(u) is defined as
mi]-(u) = /G_ATQij(dT, u) (25)
0

Equation (24) is similar to the Bellman optimality equation in
dynamic programming algorithms, in which the expected im-
mediate reward is replaced by the expected reward, R(%,u), of
a single transition from state 7 under control po(é) = wu, and
Api;(u) is replaced by m,;(u). Hence, the optimal value func-
tion is the unique fixed-point of the Bellman optimality equation

W)

m;
g |G+ 3 i

J* (i) = max (26)

Using (22) and (25), we can compute the expected single
transition reward and m,;(u), respectively, for any SM-ARN.
These values define the Bellman optimality equation (26).
Any algorithm that solves the infinite-horizon Markov decision
process, e.g., value iteration, can be used to find the fixed-point
of (26), and also provides an optimal policy which is a solution
to problem (20). Here, we consider three hypothetical cases
for the intertransition interval distribution. For each case, we
formulate the Bellman optimality equation (26).

1) Discrete Distribution: We postulate that the duration
of the transcription of a specific gene is almost fixed, given
the expression status of other genes in the network. Due to
latent variables, we assume that this value is drawn from a
set of possible values {7;;(k,u)},_; with probabilities

{QL](k u)}k 1,

..... ,m

me Using (22), we have

|W| m

R(i,u)=7r(i,u ZZ 1= oxp( i\ﬂj(k U))pu( u)oij(k, u).

7=1k=1

(27
The value of R(i,u) can easily be computed. Using (25), we
have

Z ng QZJ (k,u)exp (— /\T’ij(ka u)) (28)

mi;(u
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s0 m;;(u) can also be computed. Having (27) and (28), we ap-
propriately formulate the Bellman optimality equation (26).

2) Uniform Distribution: We assume that, given the expres-
sion status of other genes in the network, we can measure the
maximum and the minimum duration of transcription of a spe-
cific gene. We postulate that the intertransition interval between
two states can take any value within the range from the max-
imum value to the minimum value with an equal probability.
The intertransition interval between two logical states 7 and j
has a uniform distribution in the interval [c;; (), d;;(u)].

Using (22), we have

R(i,u) = —T(’;“)
(W]
_exp (—Acyj(u)) —exp (—Adij(u))
<3 (1 X (di5 () i3 (w)

Again, the value of R(7, u) can easily be computed. Using (25),
we have

> pij(u). (29)

i=1

exp (—Ac;j(u)) — exp (—Ad;;(u))
A(dij(u) = cij(u))

som;;(u) can also be computed. Having (29) and (30), we again
appropriately formulate the Bellman optimality equation (26).
3) Exponential Distribution: The amount of data observed
from a biological system is usually limited. Instead of using the
data to estimate an arbitrary intertransition interval distribution,
we can postulate a class of parametric distributions whose mem-
bers can be defined with a single parameter, e.g., the expected
value. Here, we assume the distribution of the intertransition in-
terval follows an exponential distribution. If all the intertransi-
tion intervals of state ¢ are exponentially distributed, then the
sojourn time of state ¢ possesses an exponential distribution

mij (u) = p'ij(u) (30)

Pi(r,u)=1—e W7 7>, @31

In (31), v;(u) is the rate of transition from state ¢ whenever the
control has value w. Practically, the rates v;(u) are bounded for
all states 2 € W, and all controls u € C.

Assuming the distribution the intertransition interval is ex-
ponentially distributed, we use an alternative approach, termed
uniformization, to derive the Bellman optimality equation (26).
Uniformization speeds up transitions that are slow on the av-
erage by allowing fictitious transitions from a state to itself, so
sometimes after a transition the state may stay unchanged [23].
In uniformization, a uniform transition rate v is assigned to all
the states. The uniform transition rate v is selected such that
vi(u) < vforalli € YW and u € C. Using the uniform transi-
tion rate v, we define the set of new transition probabilities for
each state of the uniformed SMDP by

I T

It can be shown that leaving state ¢ at a rate v;(u) in the orig-
inal SMDP is statistically identical to leaving state ¢ at the faster
rate v, but returning back to 7 with the probability (1 —v;(u)/v)
in the uniformed SMDP with transition probabilities defined
in (32).

Since states of the SMDP remain constant between epoch
times, the expected total discounted reward in (19) can be ex-
pressed as

J(i)=Y_FE

k=0

th+1

e My (2(tr), u(ty)) dt|z(to) = i

ty

(33)
Considering the memoryless property of the exponential distri-
bution, we can express (33) as

oo k
P oy e e T

k=0

According to the latest form of the expected total discounted
reward in (34), we can exploit the MDP results to determine the
Bellman optimality transformation (26). The expected reward
of a single transition is

. r(z,u
and the value of parameter m;;(u) is determined by
2
mij(u) = = pij(w). (36)

IV. CONTROL OF A MAMMALIAN CELL CYCLE
RELATED NETWORK

In this section, we present an SM-ARN that is a probabilistic
version of the Boolean model of the mammalian cell cycle re-
cently proposed in [17]. Using this Boolean model, we construct
an SM-ARN that postulates the cell-cycles with mutated pheno-
type. The proposed intervention method is then applied to hinder
the cell growth in the absence of growth factors.

During the late 1970s and early 1980s, yeast geneticists iden-
tified the cell-cycle genes encoding for new classes of molecules,
including the cyclins (so-called because of their cyclic pattern of
activation) and their cyclin dependent kinases (cdk) partners [17].
Our model is rooted in the work of Faure et al., who have recently
derived and analyzed the Boolean functions of the mammalian
cellcycle[17]. The authors have been able to quantitatively repro-
duce the main known features of the wild-type biological system,
as well as the consequences of several types of mutations.

Mammalian cell division is tightly controlled. In a growing
mammal, the cell division should coordinate with the overall
growth of the organism. This coordination is controlled via extra-
cellular signals. These signals indicate whether a cell should
divide or remain in aresting state. The positive signals, or growth
factors, instigate the activation of Cyclin D (CycD) in the cell.

The key genes in this model are CycD, retinoblastoma (Rb),
and p27. Rb is a tumor-suppressor gene. This gene is expressed
in the absence of the cyclins, which inhibit the Rb by phosphory-
lation. Whenever p27 is present, Rb can also be expressed even
in the presence of CycE or CycA. Gene p27 is active in the ab-
sence of the cyclins. Whenever p27 is present, it blocks the ac-
tion of CycE or CycA. Hence, it stops the cell cycle.

The preceding explanation represents the wild-type cell-cycle
model. Following one of the proposed mutations in [17], we as-
sume p27 is mutated and its logical rule is always zero (OFF).
In this cancerous scenario, p27 can never be activated. This mu-
tation introduces a situation where both CycD and Rb might be
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TABLE 1
MUTATED BOOLEAN FUNCTIONS OF MAMMALIAN CELL CYCLE

Product  Predictors

CycD  Input

Rb (CycD A CycE A CycA A CycB)

E2F (Rb A CycA A CycB)

CycE  (E2F ARb)

CycA  (E2F ARbACdc20 A (Cdhl A Ubc)) V (CycA A Rb A Cde20 A (Cdhl A Ubc))
Cdc20  CycB

Cdhl  (CycA A CyeB) V (Cdc20)

Ube (Cdh1) v (Cdhl A Ube A (Cde20 V CycA v CycB))

CyeB  (Cdc20 A Cdhl)

inactive. As a result, in this mutated phenotype, the cell cycles in
the absence of any growth factor. In other words, we consider
the logical states in which both Rb and CycD are down-regu-
lated as undesirable states, when p27 is mutated. Table I sum-
marizes the mutated Boolean functions.

The Boolean functions in Table I are used to construct the
embedded-PBN of the cell-cycle’s SM-ARN. The defined em-
bedded-PBN maintains the topology of the oriented graph gen-
erated by the predictors in Table I. To this end, we assume
that the extra-cellular signal to the cell-cycle model is a la-
tent variable. The growth factor is not part of the cell and its
value is determined by the surrounding cells. The expression
of CycD changes independently of the cell’s content and re-
flects the state of the growth factor. Depending on the expression
status of CycD, we obtain two constituent Boolean networks
for the embedded-PBN. The first constituent Boolean network
is determined from Table I when the value of CycD is equal to
zero. Similarly, the second constituent Boolean network is de-
termined by setting the variable of CycD to one. To completely
define the embedded-PBN, the switching probability, the per-
turbation probability, and the probability of selecting each con-
stituent Boolean network have to be specified. We assume that
these are known. Here, we set the switching probability and the
perturbation probabilities equal to 1072 and 10~3, respectively,
and the two constituent Boolean networks are equally likely.

We also have to specify the intertransition interval distribu-
tions between the logical states to fully define the cell-cycle’s
SM-ARN. Although such information is likely to be available
in the near future, it is not available today. Here, we simply as-
sume that all intertransition intervals between logical states are
exponentially distributed. If 7(4, 7) is the sojourn time in logical
state ¢ before transition to state j, then we need the rate of the
transition from state ¢ to state j to specify its distribution. We
use the gene-expression data to determine the probability, p;;,
of the transition from state ¢ to state 5 in the embedded-PBN.
We assume that the rate of the transition from state ¢ to state j
is assigned such that

P {T(L,J) <

In other words, the probability of the first transition out of state
1 to state j is equal to the transition probability p;;. The left side
of (37) can be determined for exponentially distributed sojourn
times.

According to Table I, the cell-cycle’s SM-ARN consists
of nine genes: CycD, Rb, E2F, CycE, CycA, Cdc20, Cdhl,

K] (7

,_min 7 (4, k)} = pij.

UbcH10, and CycB. The above order of genes is used in the
binary representation of the logical states, with CycD as the
most significant bit and CycB as the least significant bit. This
order of genes in the logical states facilitates the presentation
of our results and does not affect the computed control policy.

Preventing the logical states with simultaneously down-reg-
ulated CycD and Rb as our objective, we apply the intervention
method described in Section III to the constructed SM-ARN.
Here we only consider a single control, u. If the control is high,
u = 1, then the state of the control gene isreversed; if u = 0, then
the state of the control gene remains unchanged. The control gene
can be any one of the the genes in the model except CycD.

We assume that the reward of the logical states with down-
regulated Rb and CycD is lower than those for the states in
which these two genes are not simultaneously down-regulated.
We also consider the cost of applying a control action, which
reduces the reward of each logical state. We postulate the fol-
lowing rate-of-reward function:

(6, ifu=0and
(CycD, Rb) # (0, 0) for logical state ¢

1, ifu=0and
. CycD,Rb) = (0, 0) for logical state %

r(i,u) = 5, ifl(b = 1and /=00

(CycD, Rb) # (0, 0) for logical state

0, ifu=1and
\ (CycD, Rb) = (0, 0) for logical state 7.

(38)

We select an arbitrary rate of reward; however, the reward and
control cost are selected so that applying the control to pre-
vent the undesirable logical states is preferable in comparison
to not applying control and remaining in an undesirable state.
In practice, the reward values have to capture the benefits and
costs of the intervention and the relative preference of the states.
They have to be set in conjunction with physicians according
to their clinical judgement. Although this is not feasible within
the domain of current medical practice, we do believe that such
an approach will become increasingly mainstream once engi-
neering approaches are demonstrated to yield significant bene-
fits in translational medicine.

Assuming the preceding rate-of-reward function, we compute
a control policy for the SM-ARN of the cell cycle. Fig. 5 depicts
the fraction of time that the SM-ARN spends in each logical
state when there is no intervention. Per Fig. 5, the aggregated
fraction of time that the cell-cycle model spends in the logical
states with simultaneously down-regulated CycD and Rb is sig-
nificant. In the long run, the model spends 49% of its time in the
undesirable states.

We define AP to be the percentage of the change in the frac-
tion of time that the SM-ARN spends in the logical states with
simultaneously down-regulated CycD and Rb before and after
the intervention. As a performance measure, AP indicates the
percentage of the reduction in the fraction of time that the model
spends in undesirable logical states in the long run.

If we assume that we can alter the expression level of any gene
in the network as a therapeutic method, then it is natural to ask
which gene should be used as a control gene to alter the behavior
of the model. To this end, we find an intervention policy for
each of the genes in the network using the intervention method
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TABLE II
AP FOR THE INTERVENTION STRATEGY BASED ON VARIOUS CONTROL GENES

Control Gene Rb E2F CycE  CycA Cdc20 Cdhl  UbcH10 CycB
AP 94.2% 89.1% T711% 62.1% 63.5% 684%  59.7%  75.2%
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Fig. 5. Fraction of time that the SM-ARN of mammalian cell cycle spends in
each logical state prior to intervention. The vertical line separates the undesir-
able logical states from the desirable logical states.
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Fig. 6. Fraction of time that the SM-ARN of mammalian cell cycle spends in
logical states after intervention using Rb as the control gene. The vertical line
separates the undesirable logical states from the desirable logical states.

explained in Section III. Table II lists the value of AP corre-
sponding to each gene in the network. Among all the genes, Rb
and E2F have the best performance.

After the intervention in the SM-ARN based on the control
policy designed for Rb, the fraction of time that the model
spends in the undesirable logical states is significantly altered.
Directly using Rb as the control gene, we can reduce the
fraction of time that the model spends in the undesirable states
to less than 2%.

If the direct control of Rb is not feasible, then one can use
E2F as the control gene. In this case, the system spends slightly
more time in the undesirable states, but still less than 4.5%. The
difference between the performances of Rb and E2F is some-
what insignificant. Fig. 7 depicts the percentage of time that the

Fig. 7. Fraction of time that the SM-ARN of mammalian cell cycle spends in
logical states after intervention using E2F as the control gene. The vertical line
separates the undesirable logical states from the desirable logical states.

SM-ARN spends in each logical state after intervention when
the control strategy is designed based on E2F.

V. CONCLUSION

We have formulated the design of optimal intervention strate-
gies for two proposed asynchronous regulatory network models
with discrete state spaces. The DA-PBN model extends the ben-
efits of context-sensitive PBNs by adding the ability to cope with
temporal context as well as structural context. Since asynchro-
nism at the node level has practical limitations, we introduce the
SM-ARN model, in which the asynchronism is at the logical-
state level. Empirically measurable timing information of bio-
logical systems can be directly incorporated into the SM-ARN
model to determine the time-delay distributions between transi-
tions from one logical state to another logical state. Using the
SM-ARN model, we have modeled the dynamics of a mam-
malian cell cycle regulatory network. The proposed intervention
method for the SM-ARN is then used to design a strategy to in-
fluence the dynamics of the SM-ARN constructed for the mam-
malian cell cycle. The goal of the intervention is to reduce the
long run likelihood of undesirable cell growth. The presented
numerical studies strongly suggest that our intervention method
effectively alters the dynamics of the cell cycle model.
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