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Abstract—In this paper, we study a binary decentralized de-
tection problem in which a set of sensor nodes provides partial
information about the state of nature to a fusion center. Sensor
nodes have access to conditionally independent and identically
distributed observations, given the state of nature, and transmit
their data over a wireless channel. Upon reception of the informa-
tion, the fusion center attempts to accurately reconstruct the state
of nature. Specifically, we extend existing asymptotic results about
large sensor networks to the case where the network is subject to
a joint power constraint, and where the communication channel
from each sensor node to the fusion center is corrupted by additive
noise. Large deviation theory is used to show that having identical
sensor nodes, i.e., each node using the same transmission scheme,
is asymptotically optimal. Furthermore, a performance metric by
which sensor node candidates can be compared is established. We
supplement the theory with examples to illustrate how the results
derived in this paper apply to the design of practical sensing
systems.

Index Terms—Communication systems, decision-making, multi-
sensor systems, radio communication, signal detection.

I. INTRODUCTION

ATYPICAL binary decentralized detection sensing system
is one where geographically dispersed sensor nodes re-

ceive information about the state of nature . Each sensor node
is required to transmit a summary of its own observation to a
fusion center. Based on the received data, the fusion center pro-
duces an estimate of the state of nature. In the Bayesian problem
formulation, the probability of error at the fusion center is min-
imized. While in the Neyman–Pearson formulation, the proba-
bility of type II error is minimized, subject to a constraint on the
type I error probability.

The framework of detection theory was first extended to a
decentralized setting by Tenney and Sandell [1]. Evidently, the
performance of a decentralized system is suboptimal in compar-
ison with its centralized counterpart, as information may be lost
in local processing and transmission. Nonetheless, factors such
as cost, communication bandwidth, and reliability may motivate
the use of a decentralized detection system. Besides, in systems
with a large number of sensor nodes, uncompressed information
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could flood and overwhelm the fusion center. The design goal
of the decentralized detection problem is to jointly optimize the
decision rules at the sensor nodes and at the fusion center, as
to minimize the probability of detection error. The crux of the
problem is to pick a quantization function for every sensor node.
Once this is achieved the fusion center faces a classical hypoth-
esis testing problem, and the optimal decision rule at the fusion
center can be established based on the standard likelihood ratio
test.

The problem of decentralized detection has received much
attention in the literature. For instance, previous work on
this topic includes decentralized detection by a large number
of sensor nodes [2], [3], sequential decentralized detection
[4], and decentralized detection for dependent observations
[5]. The reader is referred to Tsitsiklis [6], Viswanathan and
Varshney [7], Blum et al. [8], and to the references contained
therein for a summary of the early work in this field. Most
results on decentralized detection assume that each sensor node
produces a finite-valued function of its observation, which is
conveyed reliably to the fusion center. In a wireless system, this
assumption of reliable transmission may fail as information is
transmitted over a noisy channel [9]. We, therefore, consider
the alternative problem formulation where the fusion center
only has access to a noisy version of the sent messages, and
where the wireless sensing system is limited by a joint power
constraint on the sensor nodes. The joint power constraint on
the sensor nodes will prove suitable for the design of energy
efficient sensing systems.

The remainder of this paper is as follows. In Section II, we
introduce a mathematical framework for the study of the decen-
tralized detection problem in the context of power constrained
wireless sensing systems. In Section III, we show how having
identical sensor nodes is asymptotically optimal, as the power
constraint increases to infinity. Moreover, we present a mean-
ingful metric to compare the performance of sensor nodes in
large systems. The subsequent section contains numerical ex-
amples that illustrate the pertinence of our results. In Section V,
we discuss the Neyman–Pearson variant of the decentralized
detection problem. Finally, we give our conclusions in the last
section.

II. STATEMENT OF THE PROBLEM

Let be a sequence of random observations, each taking
values in a measurable space . Sensor node has access
to observation and is required to send a summary of its
own observation to the fusion center. Information is transmitted
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Fig. 1. Block diagram of a wireless sensing system where each sensor node
transmits information to the fusion center over a wireless channel.

over a communication channel. The fusion center receives de-
graded information from node , which is of the form

(1)

where is additive noise. We consider the simple situation,
where the observations are independent and identically
distributed (i.i.d.), conditioned on the state of nature , and
where the additive noise is also i.i.d. across sensor nodes. The
hypothesis testing problem consists of deciding, based on the
sequence , whether the law generating is corre-
sponding to hypothesis , or corresponding to hypothesis

. This setting is illustrated in Fig. 1. We note that the number
of active sensor nodes is not fixed a priori in this framework.

Let be a nonempty subset of the set of all measur-
able functions from observation space to transmission
space . A transmission mapping is an element of .
A transmission strategy is a vector function of the form

with the interpretation that, upon
receiving information , sensor node transmits summary

to the fusion center.
We assume that the probability measures and are

known beforehand, that they are mutually absolutely contin-
uous (equivalent), and that they are distinguishable. We also
assume that the noise probability distribution is known. Then,
under hypothesis , the mapping induces a probability law

on the reception space .
A decision test is a measurable map

such that when is observed, hypothesis
is accepted if , while hypothesis is

accepted if . The performance of decision
test is characterized by the error probabilities

where denotes the product measure on induced by
transmission strategy under . Since and are mu-
tually absolutely continuous, so are the measures and

. The likelihood ratio between and (i.e., the
Radon–Nikodym derivative of with respect to )

is, therefore, well-defined for every transmission map .

We consider the specific detection problem where a network
of wireless sensor nodes is subject to a total power constraint.
That is, the expected consumed power summed across all the
sensor nodes may not exceed a given constraint .

Definition 1: Fix a priori probabilities and .
An admissible transmission strategy is a vector function

such that

where represents the expected power consumed by
sensor node .

Note that implicitly depends on the a priori probabil-
ities and since, for instance, the expected power
radiated at the antenna of sensor node is given by

For transmission strategy , define

where the infimum is over the set of all decision tests. The design
problem is to select an admissible transmission strategy such
that the Bayes probability of error at the fusion center is
minimized.

Being primarily interested in large sensor networks, we
consider the asymptotic regime where the power constraint

increases to infinity. As we will see, this corresponds to
the asymptotic regime where the number of sensor nodes and,
possibly, the area covered by those nodes increase to infinity.
For any reasonable collection of transmission strategies, the
Bayes probability of error at the fusion center goes to zero
exponentially fast as tends to infinity. It is then natural to
compare collections of strategies based on their exponential
rate of convergence to zero

Throughout, we use as a convenient notation for a transmis-
sion strategy subject to .

III. BASIC CONCEPTS AND RESULTS

The following theorem demonstrates how the class of trans-
mission strategies with identical sensor nodes is optimal in
terms of exponential rate of convergence in error probability.
Let be the set of finite subsets of . For , let be
the set of transmission strategies of the form ,
where and for all . In other words, is the
set of all strategies with a finite number of sensor nodes, where
each node employs a transmission mapping contained in .
For example, denotes the set of strategies for which all
sensor nodes use identical transmission mapping .

Theorem 1: Using identical transmission mappings for all
the sensor nodes is asymptotically optimal
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where again denotes admissible strategies for total power
constraint .

This theorem provides an extension to the work by Tsitsiklis
[2], in which identical sensor nodes are shown optimal for de-
centralized detection by a large number of nodes. In the current
formulation, the total power rather than the number of sensor
nodes forms the fundamental constraint on the sensing system.
Moreover, we relax the assumption that is a finite-valued func-
tion and that the communication channels between sensor nodes
and the fusion center are noiseless.

This alternative framework where the system is limited by a
total power constraint is suitable for wireless sensor networks,
especially in view of the importance of power conservation in
such systems. It establishes that using identical sensor nodes
is asymptotically optimal, and also that optimal performance
is achieved by selecting the sensor node candidates with the
largest normalized Chernoff information. The second result is
new and captures the relationship between power consumption
and system performance in large sensor networks. It is made
precise in the proof of Theorem 1, which we present below. We
begin the proof with the introduction of some useful preliminary
results.

A. Large Deviations for I.I.D. Observations

For a sequence of independent observations, the exponen-
tial rate of convergence in the Bayes error probability can be
computed based on Cramér’s theorem [10]. Let be
a sequence of i.i.d. random variables and consider the hypoth-
esis testing problem that consists in deciding whether the law
generating is or . Assume that and are mu-
tually absolutely continuous, distinguishable measures and let

. The logarithmic moment generating function
of under is defined as

The large deviations associated with the empirical mean of i.i.d.
random variables is characterized by the Fenchel–Legendre
transform of , which is defined as

Write the conditional means of as
. We note that because are distinguishable mea-

sures, is nonzero with positive measure and, as a conse-
quence, . The following theorem, which we quote from
Dembo and Zeitouni [10], characterizes the large deviations of
the probabilities of error under likelihood ratio tests.

Theorem 2: Let be the probability of declaring hypoth-
esis under given observations ; similarly, let

be the probability of declaring under given obser-
vations. Then, the likelihood ratio test with constant threshold

satisfies

where is the Fenchel–Legendre transform of .

A useful corollary to this theorem states that the Chernoff
bound on the exponential rate of convergence in the Bayes prob-
ability of error is tight.

Corollary 1 (Chernoff): If , then

where is the probability of error at the fusion center given
observations and the infimum is over all decision tests.
We note that for hypothesis testing problems

. Furthermore, the function is convex.
These properties lead to a simpler expression for the
Fenchel–Legendre transform of evaluated at zero,
namely

In the context of hypothesis testing, is often called the
Chernoff information.

A second result that can be derived from Theorem 2 is Stein’s
lemma [10].

Lemma 1 (Stein’s Lemma): Let be the infimum of
among all tests with . Then, for any

where is the familiar Kullback–Leibler divergence
or relative entropy between two probability measures.

Stein’s lemma will prove useful in Section V, where we con-
sider the Neyman–Pearson variant of the detection problem in-
troduced in Section II.

B. Large Deviations in Decentralized Detection

The initial step in establishing Theorem 1 is to construct a
lower bound on the exponential rate of convergence in the Bayes
error probability.

Lemma 2: Let be fixed. There exist nonnegative real
numbers such that and

(2)

Proof: For transmission strategy , let repre-
sent the number of sensor nodes with transmission mapping
in strategy and define

In other words, is the proportion of the power constraint
allocated to sensor nodes of type . Clearly, the inequality

holds for any strategy such that .
For constraint , define

Note that the minimum is always achieved since there is only
a finite number of strategies in such that the condition

holds.
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Consider an increasing sequence with the
following properties

and exists for all . Such a sequence exists
since for all and all , and only has a
finite number of elements.

Let be given. For , select
a real number such that is a rational number
and . Then, choose an integer such
that for all . Define the sequence

componentwise by

and let be a transmission strategy with sensor
nodes of type . By construction, we have

. It follows that

where follows from Corollary 1 applied to vector obser-
vations and where the number
of sensor nodes of type in is

. Since

is bounded for all and is arbitrary, we obtain (2)
as desired.

The form of an optimal solution is considered next. Lemma
3 establishes that the exponential rate of convergence in error
probability is lower bounded by the performance of the best
transmission mappings in .

Lemma 3: Let be fixed. The constrained optimization
problem

(3)

subject to has an optimal solution, where is
equal to one for some , and the remaining are equal to
zero.

Proof: Let

For any choice of such that , we obtain

Hence, having and for all is
optimal.

By comparing (2) and (3), we see that the solution to the
minimization problem in Lemma 3 gives a lower bound on the
right-hand side of (2). Hence, to complete the Proof of Theorem
1, it suffices to show that the lower bound derived in Lemma 3
is achieved by a sequence of admissible transmission strategies.

Lemma 4: Let be fixed. For any , there exists
a set of transmission strategies such that

(4)

Proof: Consider the strategy composed of
sensor nodes with transmission mapping . Then,
and by Corollary 1

That is, there exists a subsequence of transmission strategies
converging to the right-hand side of (4), as desired.

Collecting the results of Lemma 2 through Lemma 4, we
immediately obtain Theorem 1. That is, using identical trans-
mission mappings for all the sensor nodes is asymptotically
optimal. Furthermore, for wireless sensor networks with a large
power constraint, prospective sensor types should be compared
according to the normalized Chernoff information

The normalized Chernoff information captures the natural
tradeoff between power consumption and information ren-
dering in large sensing systems. Intuitively, allocating more
power per node implies receiving more reliable information
from each node at the fusion center. On the other hand, for a
fixed power constraint , a reduction in power consumption
per sensor node allows the network to contain more active
nodes. This tradeoff is expressed in mathematical terms by
normalizing the Chernoff information by the consumed power.
For example, doubling the Chernoff information provided by
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each sensor node present in the network results in the same gain
in overall performance as reducing the power consumption per
node by half and doubling the number of nodes.

IV. APPLICATIONS AND NUMERICAL EXAMPLES

In this section, we illustrate how the normalized Chernoff
information can be employed to compute optimal transmit
power levels for wireless sensor nodes. We study three distinct
scenarios. In the first scenario, we compute an upper bound
for the asymptotic decay in error exponent based on the power
radiated at the antenna of each sensor node. We then provide
a more realistic analysis which takes into account the radiated
power together with the power consumed at the sensor nodes
themselves. Finally, we discuss how the results presented in
this paper can be applied to the classical decentralized detection
framework, where each sensor node reliably transmits a finite-
valued function of its observation to the fusion center.

A. Upper Bound on Error Exponent

To obtain an upper bound on the normalized Chernoff infor-
mation

we let be the expected radiated power at the antenna of
a sensor node. This is only an approximation since the anal-
ysis disregards the power consumed at the sensor nodes them-
selves. In fact, this produces an upper bound on the performance
of the system since, in general, the total power drained from
the battery includes the power radiated by the communication
unit, as well as the power consumed by the processing unit of
the sensor. An upper bound based on radiated power quantifies
the ultimate performance of a sensing system in a specific en-
vironment. As technology improves, power consumption at the
sensor nodes decreases and, as a consequence, the aforemen-
tioned upper bound on performance becomes increasingly tight.

We consider the scenario where the wireless sensor nodes
have access to Gaussian observations with shifted means. Math-
ematically, the random variable available at each sensor node
has conditional distribution

where denotes a Gaussian distribution with mean
and variance . The fusion center receives a noisy ver-

sion of the data transmitted by the sensor nodes as described
in (1). We also assume that the communication noise corre-
sponding to sensor node has a Gaussian distribution .
Based on the received data, the fusion center makes a final de-
cision regarding the state of nature.

Finding a transmission mapping that maximizes the nor-
malized Chernoff information over all measurable functions
from to is, in general, hard. This is partially due to the fact
that the search space for an optimal tends to be vast. Also,
the Chernoff information with its minimization over
is a complicated performance metric; it is not suitable for most

standard optimization techniques. Yet the normalized Chernoff
information can readily be employed to assess the performance
of practical sensing systems, where an optimal transmission
mapping is to be selected from a reasonable pool of candi-
dates . This is illustrated below, where we study two classes
of sensor nodes.

1) Binary Sensor Nodes: In this first class of sensor nodes,
each node computes and sends a 1-bit summary of its own obser-
vation. We assume that the transmission mapping employed
by the nodes is a binary threshold function of the form

(5)

where . The probability measures on the reception space
are incidentally absolutely continuous with respect to the

Lebesgue measure and have probability density functions given
by

where is the complementary Gaussian cumulative distri-
bution function . We note that
the radiated power per sensor node in this example is indepen-
dent of a priori probabilities and , and that it is
given by . The normalized Chernoff information
can be computed as

(6)

Although (6) does not admit a closed form expression, it can
easily be computed numerically. It is also possible to derive an
upper bound for the Chernoff information of (6). First, we note
from Fig. 2 that the normalized Chernoff information is mono-
tone decreasing in . It follows that the normalized Chernoff in-
formation corresponding to transmission mapping is upper
bounded by its limiting value as approaches zero

Fig. 2 shows the normalized Chernoff information along
with the corresponding upper bound for the transmission
mapping of (5) and the following channel parameters:

, and .
2) Analog Sensor Nodes: The second class of sensor nodes

we study is the collection of nodes where each unit retrans-
mits an amplified version of its own observation. In this setup,
a sensor node acts as an analog relay amplifier with a transmis-
sion mapping of the form

(7)
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Fig. 2. Normalized Chernoff information corresponding to wireless sensor
nodes with binary transmission mapping  and radiated power f( ) = m .

where . Transmission map induces the following prob-
ability laws on reception space

The associated radiated power per sensor node, which is again
independent of a priori probabilities and , is given
by

where the expectation is taken over the random variables and
. We can write the corresponding normalized Chernoff infor-

mation as

Again, we see that the normalized Chernoff information is a
monotone decreasing function of radiated power. Moreover, for
any transmission mapping , where has the form of (7), the
asymptotic rate of decay in error exponent is upper bounded by

Fig. 3 plots the normalized Chernoff information along with the
corresponding upper bound for the transmission mapping of (7).

3) Performance Comparison: It is instructive to compare
the transmission schemes introduced in the previous two sec-
tions. Fig. 4 plots the asymptotic performance of sensor nodes
with binary transmission mapping against the asymptotic
performance of sensor nodes with analog transmission mapping

. As seen in Fig. 4, there is a crossover between the two
functions, with analog sensor nodes performing better below
a threshold SNR. This precludes an early dismissal of analog
sensor nodes in favor of the more studied digital nodes. Indeed,
for some detection applications, wireless sensor nodes with
continuous transmission mappings may outperform sensor
nodes with finite-valued transmission mappings.

Fig. 3. Normalized Chernoff information corresponding to wireless
sensor nodes with analog transmission mapping  and radiated power
f( ) = a (m + � ).

Fig. 4. Comparison of the normalized Chernoff information for wireless
sensing systems with binary sensor nodes and analog sensor nodes.

B. Optimal Radiated Power

In Section IV-A, we derived upper bounds on the asymptotic
decay in error exponent for two classes of sensor nodes. These
bounds were obtained under the optimistic assumption that the
power consumed at the sensor node is negligible compared with
the power radiated by the communication unit. However, this
may not be true, especially if sensor nodes transmit their data at
very modest power levels.

In this section, we show how the analysis of the previous sec-
tion can be modified to account for the power consumed at the
sensor nodes. In particular, we reconsider the analysis of binary
sensor nodes with transmission mapping , where is as de-
fined in (5), under the assumption that the power consumed at
the nodes is nonnegligible. When the power consumed at a node
itself is nonnegligible, the normalized Chernoff informa-
tion becomes
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Fig. 5. Plot of the normalized Chernoff information for binary sensor nodes,
taking into account the power consumed at the nodes themselves. Optimal
radiated power are finite and correspond to global maxima in the normalized
Chernoff information curves.

It is interesting to note that when is taken into account the
optimal transmit power has a finite, nonzero value. Indeed for

, we have the following limits:

and, by continuity, this implies that the optimal transmit power
belongs to the open interval . This behavior is seen in
Fig. 5, where the normalized Chernoff information is plotted
for node power W. For reference, the figure also
includes the upper bound derived under the assumption that the
power consumed at the node is negligible.

C. Finite Quantizers With Reliable Channels

The final scenario we consider is the classical decentralized
detection framework, where each sensor node transmits a finite-
valued function of its observation to the fusion center over a re-
liable communication channel. We assume that the nodes share
a multiple-access channel that is capable to carry bits of infor-
mation per unit time. In this framework, ,
where is the number of candidate messages potentially sent
by transmission mapping . From Theorem 1, we know that
using identical transmission mappings for all the sensor nodes
is asymptotically optimal. Therefore, an optimal transmission
mapping is a discrete map that maximizes the normalized
Chernoff information

From this observation, we obtain a result analogous to our pre-
vious result on capacity constrained sensor networks [11].

Theorem 3: Assume that the probability measures and
on the observation space are mutually absolutely continuous.
If there exists a binary transmission mapping such that

then having identical sensor nodes, each sending 1 bit of infor-
mation, is asymptotically optimal.

Proof: Let be any admissible transmission mapping
with . Then, from the sequence of inequalities

we conclude that having binary sensor nodes is asymptotically
optimal.

Since the conditions of Theorem 3 hold for Gaussian observa-
tions and exponential observations (see [11]), having identical
binary sensor nodes is asymptotically optimal in these two situ-
ations. Note that the results presented in this paper assume only
one observation per sensor node and are valid as long as the
wireless sensing system is large enough. This is in contrast with
our initial results [11], where we assumed that each sensor node
receives a long sequence of observations.

V. NEYMAN–PEARSON PROBLEM

Extending the results of the preceding sections to the
Neyman–Pearson variant of the detection problem introduced
in Section II requires little effort. In the latter problem formu-
lation, and are unknown and denotes the
expected power consumed by sensor node under hypothesis

. The power constraint is then a constraint on the behavior
of the system under hypothesis .

Again, one can show that using identical transmission map-
pings is asymptotically optimal as the power constraint tends
to infinity. For , let be the infimum of
among all decision tests such that , i.e.,

Theorem 4: Using identical transmission mappings for all
the sensor nodes is asymptotically optimal

where denotes admissible strategies for total power con-
straint .

The steps required to prove Theorem 4 are essentially the
same as the steps used to prove Theorem 1. For this reason,
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we omit the proof. It is interesting to note that the normalized
relative entropy

plays the role of the normalized Chernoff information for the
Neyman–Pearson variant of the detection problem introduced in
Section II. That is, in a Neyman–Pearson framework, prospec-
tive sensor types for a sensor network with a large power con-
straint should be compared according to the normalized relative
entropy.

VI. CONCLUSION AND DISCUSSION

We considered a decentralized detection problem in which a
network of wireless sensor nodes provides relevant information
about the state of nature to a fusion center. We addressed the
specific case where observations are conditionally i.i.d., given

, where the sensor network is subject to a total power con-
straint, and where sensor nodes are relaying information to the
fusion center over a noisy communication channel.

We focused primarily on the Bayesian problem in which
the probability of error at the fusion center is minimized.
Having identical sensor nodes was found to be optimal in the
asymptotic regime where the total power constraint tends to
infinity. Moreover, our analysis showed that the normalized
Chernoff information is an appropriate metric in comparing
prospective sensor nodes for large systems. The optimality
of wireless sensor networks with identical sensor nodes is
encouraging as it simplifies the design of such systems. In
particular, for large systems, transmission mapping candidates
should be compared according to the normalized Chernoff
information criterion

Alternatively, in the Neyman–Pearson problem formulation
where the probability of type II error is minimized subject
to a constraint on the type I error probability, the normalized
relative entropy

should be used as a performance metric.
We also provided examples on how to apply these results

to practical systems. In particular, we have derived upper
bounds on the performance of binary sensor nodes and analog
sensor nodes. We have shown how optimal transmission power
levels can be derived for binary sensor nodes having access to
Gaussian observations. Finally, we have used the normalized
Chernoff information to derive conditions that insure the op-
timality of binary sensor nodes in the classical decentralized
detection framework, where sensor nodes transmit discrete in-
formation over a reliable multiple access channel. In particular,
binary sensor nodes are asymptotically optimal for Gaussian
observations and exponential observations in this scenario.

We now discuss some future avenues of research. Wireless
communication channels are often subject to fading. If sensor

nodes are to be scattered around somewhat randomly, it is con-
ceivable that their respective communication channels will be
subject to fading, with certain nodes having much better chan-
nels than others. It would be interesting to develop techniques
that quantify the performance loss due to fading in sensor net-
works, especially in the scenario where sensor nodes can adapt
to different fade levels.

Another interesting topic is to derive meaningful performance
metrics for sensing systems where observations are not con-
ditionally independent. This would be very relevant for sys-
tems where sensor nodes are densely packed together, as they
are more likely to observe dependent random variables. For in-
stance, it may be possible to exploit the dependence among
sensor observations to reduce the transmit power per sensor
without sacrificing overall performance.

Finally, in our analysis, we have implicitly assumed that the
bandwidth allocated to the sensing system is large or, equiva-
lently, that the time period during which sensor nodes transmit
their data is long. This assumption results in each sensor node
transmitting data to the fusion center over a dedicated commu-
nication channel. If the system bandwidth and transmission pe-
riod are severely constrained, then interference among sensor
nodes needs to be considered. It would be interesting to see what
types of communication strategies maximize the performance of
sensing systems under such additional constraints.
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