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a b s t r a c t

External control of a genetic regulatory network is used for the purpose of avoiding undesirable states,

such as those associated with a disease. To date, intervention has mainly focused on the external control

of probabilistic Boolean networks via the associated discrete-time discrete-space Markov processes.

Implementation of an intervention policy derived for probabilistic Boolean networks requires nearly

continuous observation of the underlying biological system since precise application requires the

observation of all transitions. In medical applications, as in many engineering problems, the process is

sampled at discrete time intervals and a decision to intervene or not must be made at each sample

point. In this work, sampling-rate-dependent probabilistic Boolean network is proposed as an extension

of probabilistic Boolean network. The proposed framework is capable of capturing the sampling rate of

the underlying system.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A major concern of translational genomics is to use the
knowledge of gene regulation to design therapeutic strategies. In
biology, there are numerous examples where the (in)activation of
one gene or protein can lead to a certain cellular functional state
or phenotype. For instance, in a stable cancer cell line, the
reproductive cell cycle is repeated and cancerous cells proliferate
with time in the absence of intervention. One can use the p53
gene if the intervention goal is to push the cells into apoptosis, or
programmed cell death, to arrest the cell cycle. The p53 gene is
the most well-known tumor suppressor gene, encoding a protein
that regulates the expression of several genes such as Bax and
Fas/APO1, which function is to promote apoptosis (Miyashita and
Reed, 1995; Owen-Schaub et al., 1995). In cultured cells, extensive
experimental results indicate that when p53 is activated, e.g. in
response to radiation, it leads to cell growth inhibition or cell
death (El-Deiry et al., 1993). The p53 gene is also used in gene
therapy, where the target gene (p53 in this case) is cloned into a
viral vector. The modified virus serves as a vehicle to transport the
p53 gene into tumor cells to generate intervention (Swisher et al.,
1999; Bouvet et al., 1998). As this and many other examples
suggest, it is prudent to use gene regulatory models to design
therapeutic interventions that expediently modify the cell’s
dynamics via external signals. These system-based intervention
ll rights reserved.
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methods can be useful in identifying potential drug targets and
discovering treatments to disrupt or mitigate the aberrant gene
functions contributing to the pathology of a disease.

Gene network modeling facilitates this effort by producing
dynamical systems to serve as the mathematical basis for the
derivation of optimal intervention strategies over time. Various
approaches have been proposed for modeling gene regulatory
networks. The discrete formalism of rule-based regulatory net-
works is plausible for many classes of biological systems. Strong
evidences suggest that the input–output relations of regulatory
interactions are signomial and can be well approximated by step
functions (Huang, 1999; Thomas, 1979). One popular approach is
based on Boolean networks (Kauffman, 1993). The Boolean
network framework possesses certain inherent limitations. A
class of continuous-time binary networks has recently been
introduced that include traditional Boolean networks as a special
case but are not constrained to exhibit periodic responses to
constant inputs (Oktem et al., 2003). Synchronous abstraction in
Boolean networks is used under implicit assumption that
asynchronous updating will not unduly alter the properties of a
system central to the application of interest (Harvey and
Bossomaier, 1997). Various potential issues with synchronous
networks have been noted. For instance, synchronous abstraction
may produce spurious attractors in rule-based networks (Deng
et al., 2007). In the same vein, deviation from synchronous
updating modifies the attractor structure of Boolean networks
(Greil and Drossel, 2005) and can change their long-run behavior
(Gershenson, 2002).

To date, intervention has mainly focused on the external con-
trol of probabilistic Boolean networks (PBNs) via the associated
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discrete-time discrete-space Markov processes (Pal et al., 2006).
Given the accuracy of the model, there are two practical
impediments to PBN-based intervention, both related to temporal
issues. One of these concerns the lack of information regarding the
sojourn time in any given state and the other concerns the
practical problem of sampling. The first issue, the effect of sojourn
time on the control, has been studied in Faryabi et al. (2008). In
this work, we focus on the effect of discrete sampling.

While the physical evolution of the biological gene network
occurs over continuous time, the PBN records only state transi-
tions and contains no information on the time between transi-
tions. The PBN model inherits this property from the original
Boolean model, from which it was generalized (Kauffman, 1993).
Hence, the problem can be explained in the framework of the
Boolean model. Fig. 1 shows the directed graph of a 3-gene
Boolean network, where each 3-gene state corresponds to a gene-
activity profile (GAP). Fig. 2 shows two continuous-time
realizations that are equivalent from the perspective of the
model of Fig. 1. In both Fig. 2(a) and (b), the initial state is
‘‘100’’. We observe the evolution ‘‘100’’-‘‘010’’-‘‘001’’, at which
point there are no other changes because ‘‘001’’ is an attractor of
the network. An attractor of a Boolean network is a state in which
the network will eventually enter and repeatedly cycle forever.
While equivalent from the perspective of the Boolean model, from
the perspective of continuous time, the realizations of Fig. 2(a)
and (b) are not the same. For instance, in the second realization,
the sojourn time in state ‘‘010’’ is much longer than in the first
realization. If we are only interested in tracking the transitions,
this may be of no concern. On the other hand, suppose we are
considering intervention and penalizing undesirable states. Then,
if ‘‘010’’ is an undesirable state, the penalty should be greater in
the second realization; that is, the penalty needs to consider the
sojourn time in a state. This problem has been addressed in the
framework of asynchronous PBNs by considering the process to be
defined over continuous time and treating it as a semi-Markov
process (Faryabi et al., 2008).
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Fig. 1. Presentation of a directed graph for an arbitrary 3-gene Boolean network.
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Fig. 2. Two examples of temporal gene activity profiles (GAP) for the oriented
Whether one considers the original synchronous PBNs or
asynchronous PBNs, implementation of the intervention policy
requires nearly continuous observation because precise applica-
tion requires the observation of all transitions. However, this is
not generally the case in medical applications; rather, as with
many engineering problems, the process is sampled at discrete
time intervals and a decision to intervene or not must be made at
each sample point. Since the process is not observed outside the
sample points, it is impossible to know if, or how many,
transitions have taken place between consecutive sample points.

In Fig. 2, the discrete-time process fYn;nZ0g given by Yn ¼ Ztn

is called the jump chain of the continuous-time process fZt ; tZ0g.
Both synchronous and asynchronous PBNs deal with the jump
chain under the assumption that the jumps (i.e. t0; t1; . . .) are
observed. The jump chains corresponding to realizations of Fig.
2(a) and (b) are equivalent. Fig. 2 also shows the sampled proc-
esses corresponding to each realization. The sampled process
corresponding to Fig. 2(a) is ‘‘100’’-‘‘100’’-‘‘001’’-‘‘001’’
-‘‘001’’; for Fig. 2(b), it is ‘‘010’’-‘‘010’’ -‘‘001’’
-‘‘001’’-‘‘001’’. On account of sampling, ‘‘010’’ is missed in
Fig. 2(a) and ‘‘100’’ is missed in Fig. 2(b). Whereas in a standard
Boolean network self-transitions only occur for singleton attrac-
tors, the sampled process has self-transitions. Moreover, the
estimated sojourn time is implicitly contained in the sampled
process on account of these self-transitions. As with any sampling
procedure, the sampling rate is crucial. The faster the rate, the less
transitions will be missed and the more accurate will be the
sojourn time estimates; the slower the rate, the more samples will
be missed and the less accurate will be the sojourn time
estimates. In any event, in the presence of sampling, neither the
synchronous or asynchronous PBN models will adequately reflect
the dynamics of the network from the perspective of the decision
process required for intervention. In this paper, we propose a
framework for gene regulatory networks, a sampling-rate-depen-
dent PBN (SRD-PBN), that is capable of incorporating the sampling
rate of the temporal profile. Below, we mathematically define
SRD-PBNs and expose a methodology to obtain optimal interven-
tion strategies for such systems. To set the stage, we first provide
necessary definitions in Section 2. We introduce SRD-PBNs in
Section 3. In Section 4, we derive an optimal policy for SRD-PBNs
with various properties for synthetic networks.
2. Background

2.1. Probabilistic Boolean networks

A probabilistic Boolean network (PBN) (Shmulevich et al.,
2002) consists of a sequence V ¼ fxig

n
i ¼ 1 of n nodes with

xiAf0; . . . ;d� 1g, together with a sequence ffcg
k
c ¼ 1 of vector-
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graph of Fig. 1. The dash-dot vertical lines represent the sampling times.
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valued network functions. In the framework of gene regulation,
each element xi represents the expression level of a gene. It is
common to mix the terminology by referring to xi as the i th gene.
The state vector xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ is called the gene-activity

profile (GAP) at time t. Each network function fc ¼ ðfc1; . . . ; fcnÞ

determines a constituent network (context) of the regulatory
network. The function fci : f0; . . . ; d� 1gn-f0; . . . ; d� 1g is the
predictor of gene i, whenever network c is selected. At each
updating epoch a decision is made whether to switch the
constituent network. This decision is based on a binary random
variable x with Pðx¼ 1Þ ¼ q. If x¼ 0, then the network is not
switched, the model behaves like a fixed network and the values
of all genes are synchronously updated according to the current
constituent network. If x¼ 1, then a constituent network is
randomly selected from among all constituent networks, includ-
ing the current one, according to the selection probability
distribution fpcg

k
c ¼ 1 and, after selecting fc , the values of all genes

are updated accordingly. If q¼ 1, so that a switch is permitted at
every time point, the network is said to be instantaneously

random; if qo1, then the PBN will remain in a constituent
network so long as x remains equal to 0, and the PBN is said to be
context-sensitive.

Two quantization levels have thus far been used in practice. If
d¼ 2 (binary), then the constituent networks are Boolean net-
works with 0 or 1 meaning OFF or ON, respectively. The case d¼ 3
(ternary) arises when we consider a gene to be 0 (down-
regulated), 2 (up-regulated), and 1 (invariant). This situation
commonly occurs with cDNA microarrays, where a ratio is taken
between the expression values on the test channel (red) and the
base channel (green). In this paper, we will develop the
methodology for d¼ 2, so that gene values are either 0 or 1;
however, the methodology is applicable to any finite number of
levels. For binary PBNs there is a natural bijection between the
GAP xðtÞ and its integer representation, xðtÞ, which takes values in
W ¼ f0;1; . . . ;2n

� 1g. We consider a PBN with perturbation,
meaning that there is a binary random vector g¼ ðg1; g2; . . . ; gnÞ,
independent of x, such that Pðgi ¼ 1Þ ¼ p, g1; g2; . . . ; gn are
independent. If g¼ 0 the network transitions according to the
network function, and if ca0 the value xi flips if and only if gi ¼ 1.

The dynamic behavior of a context-sensitive PBN can be
modeled by a Markov chain whose states consist of (context, GAP)
ordered pairs. Let P¼ ðpij; i; jASÞ denote the transition probability
matrix of the Markov chain, where the state-space is

S ¼ fðc; xÞ : cAf1; . . . ; kg4xAWg:

The time-evolution of the network can be modeled by a stationary
discrete-time equation

zðtþ1Þ ¼ f ðzðtÞ;wðtÞÞ for t¼ 0;1; . . . ;

where state zðtÞAS. The disturbance wðtÞ is the manifestation of
uncertainties, due to either network switching or a change in
gene-activity profile resulting from a random gene perturbation.
Gene perturbation insures that all states in the Markov chain
communicate with one another. Hence, the finite-state Markov
chain has a unique steady-state distribution.

2.2. Optimal intervention in Markovian gene regulatory networks

In the following, we describe how to devise an optimal control
policy for a Markovian gene regulatory network such as context-
sensitive PBN or sampling-rate-dependent PBN. Let P¼ ðpij; i; jASÞ
denote the transition probability matrix of the Markov chain
corresponding to the Markovian gene regulatory network. In the
presence of external control, we suppose that there exists a binary
control input, uðtÞAC¼ f0;1g. A control uðtÞ, which can take values
0 or 1 at each updating epoch t, specifies the action on the control
gene. Treatment alters the status of the control gene, which can be
selected among all genes in the network. If the control at updating
epoch t is on, uðtÞ ¼ 1, then the state of the control gene is toggled;
if uðtÞ ¼ 0, then the state of the control gene remains unchanged.
In the presence of external control, the system evolution is
represented by a stationary discrete-time equation

zðtþ1Þ ¼ f ðzðtÞ;uðtÞ;wðtÞÞ for t¼ 0;1; . . . ;

where state zðtÞ is an element of the state-space S; and wðtÞ is the
manifestation of uncertainties in the model. The probability of
transitioning from state i to state j under control u is denoted by
pijðuÞ, where i; jAS.

The problem of optimal intervention for a Markovian gene
regulatory network is formulated as an optimal stochastic control
problem. A cost-per-stage, rði;u; jÞ, is associated to each interven-
tion in the system. In general, a cost-per-stage may depend on the
origin state i, the successor state j, and the control input u. We
assume that the cost-per-stage is stationary and bounded for all i,
j in S, and u in C¼ f0;1g. We define the expected immediate cost
in state i, when control u is selected, by

rði;uÞ ¼
X
jAS

pijðuÞrði;u; jÞ:

We consider the discounted formulation of the expected total
cost. The discounting factor, aA ð0;1Þ, ensures convergence of the
expected total cost over the long-run (Bertsekas, 2005). In the case
of cancer therapy, the discounting factor emphasizes that
obtaining treatment at an earlier stage is favored over later
stages. The expected total discounted cost, given a policy p and an
initial state i, is denoted by

JpðiÞ ¼ lim
N-1

E
XN�1

t ¼ 0

atrðzðtÞ;mtðzðtÞÞ; zðtþ1ÞÞjzð0Þ ¼ i

( )
; ð1Þ

where zðtÞ; iAS. A policy p¼ fm0;m1; . . .g is a sequence of decision
rules mt : S-C, for each time step t. The vector Jp of the expected
total costs is called the value function. In a stochastic control
problem, we seek an intervention strategy p� among all the
admissible intervention strategies P that minimizes the value
function for each state i, i.e.

p�ðiÞ ¼ arg min
pAPg

JpðiÞ; 8iAS: ð2Þ

A stationary intervention strategy is an admissible interven-
tion strategy of the form p¼ fm;m; . . .g. It is known that an optimal
intervention strategy exists for the stochastic control problem
presented in (1). Furthermore, this optimal policy is stationary.
The optimal cost function J� satisfies

J�ðiÞ ¼min
uAC

rði;uÞþa
XM�1

j ¼ 0

pijðuÞJ
�ðjÞ

2
4

3
5; 8iAS; ð3Þ

where M represents the cardinality of S. This cost function J� is the
unique solution to (3) within the class of bounded functions. This
equation is known as the Bellman optimality equation. The optimal
control policy attains the minimum in the right-hand side of the
Bellman optimality equation for all i. Proofs of these statements
along with a more complete expansion of stochastic control can
be found in Bertsekas (2005). Standard dynamic programming
algorithms can be employed to find the fixed-point of the Bellman
optimality equation.

2.3. Continuous-time Markov chain

Consider a continuous-time discrete-space stochastic process
fZðtÞ; tZ0g taking on values in the set of nonnegative integers
Zþ . In analogy with a discrete-time Markov chain, we say that the
process fZðtÞ; tZ0g is a continuous-time Markov chain if 8s; tZ0,
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and nonnegative integers i; j; kAZþ , 0rnos,

PrfZðtþsÞ ¼ jjZðsÞ ¼ i; ZðnÞ ¼ k;0rnosg ¼ PrfZðtþsÞ ¼ jjZðsÞ ¼ ig:

In other words, a continuous-time Markov chain is a stochastic
process with the Markovian property. This means that the
conditional distribution of the future state at time tþs, given
the present state at time s and all the preceding states, depends
only on the present state and is conditionally independent of the
states prior to the current state. The past given the present does
not provide more information about the future.

If we let ti denote the amount of time that the process stays in
state i before making a transition into a different state, then the
Markov property implies

Prfti4sþtjti4sg ¼ Prfti4tg; 8s; tZ0:

The random variable ti is memoryless and must therefore be
exponentially distributed. In general, a continuous-time Markov
chain is defined by a Q -matrix. A Q-matrix on Zþ is a matrix
Q ¼ ðqij; i; jAZþ Þ satisfying the following conditions (Norris,
1998):

ðiÞ 0r � qiio1; 8i;
ðiiÞ qijZ0; 8ia j;

ðiiiÞ
X
jA I

qij ¼ 0; 8i: ð4Þ

In the above, qij is the rate of transitioning from i to j and
qi ¼

P
ia j qij is the rate of leaving state i. It is known that a matrix

Q is a Q-matrix on Zþ if and only if PðtÞ ¼ eQt is a stochastic
matrix, 8tZ0 (Norris, 1998). In particular, the transition prob-
ability from i to j after t unit of time, the ði; jÞ element of PðtÞ, is
given by

PrðXt ¼ jjX0 ¼ iÞ ¼ pt
ij ¼ ½e

Qt�ij:

3. Sampling-rate-dependent probabilistic Boolean networks

A context-sensitive PBN disregards the information about the
sojourn time in states present in temporal data. From another
point of view, a context-sensitive PBN models the jump chain
corresponding to the continuous-time process of interest. This
means that in an arbitrary temporal profile such as Fig. 3, the
observer can only apply intervention at instants t0; t1; . . . .
However, in patient treatment, it is not known in advance when
a transition (i.e. a jump) will occur. As such, a model based on
applying treatment when a transition occurs may not conform
with the reality and limitations of patient treatment. Time
samples and state changes are unlikely to coincide perfectly and
an intervention strategy must focus on the former not the latter.
GAP

t0 t1 t2 t3 t4
Time

Fig. 3. An example of temporal gene activity profiles.
Our objective in this work is to propose a discrete-time
discrete-space model based on context-sensitive PBNs such that
(i) it can embody sojourn time of states into the network
dynamics, (ii) it allows us to incorporate the sampling rate into
the network’s dynamics. A transition probability matrix must be
derived for the state-space of an SRD-PBN under specific
assumptions. Similar to other Markovian models, the transition
probability matrix derived for an SRD-PBN is sufficient to describe
its dynamics. The task of finding the most effective intervention
strategy can then be formulated as a sequential decision making
problem via the associated transition probability matrix.

Let us first briefly introduce the underlying structure of an
SRD-PBN. The states of the SRD-PBN take values in S, as we
defined for a context-sensitive PBN. Logical rules of different
contexts determine the probability of jumps among GAPs. To
coarsely capture the rate of change in the underlying biological
system, the proposed framework requires two parameters, which
are either known a priori or can be estimated from temporal data.
These two parameters are the maximum rate of change among
GAPs and the maximum rate of change among contexts. The rate
of change between any two states, i.e. the average number of
transitions between these two states in every unit of time,
depends on the probability of jumps between these two states,
the sampling period, the maximum rate of change among GAPs,
and the maximum rate of change among contexts. Employing
these parameters, we construct a Q -matrix on the state-space S of
the SRD-PBN. This matrix is the generator of a continuous-time
Markov chain. We are interested in the state of the continuous
process only at discrete observation instants. The memoryless
property of the continuous-time Markov chain allows us to model
the dynamics of the sampled process as a discrete-time Markov
chain. The transition probability matrix of this Markov chain is the
transition probability matrix of the SRD-PBN. Below, we define the
SRD-PBN in more details.

Given Boolean functions of context c, the probability of
jumping from state ðc; xÞ to state ðc; x0Þ is

Pðc;xÞ;ðc;x0 Þ ¼ pDðx;x0 Þð1� pÞn�Dðx;x0 Þ
þð1� pÞn1ðf cðxÞ ¼ x0Þ; ð5Þ

where p is the perturbation probability in the Boolean network.
The Hamming distance between GAPs x and x0 is denoted by
Dðx; x0Þ. We use 1ð Þ to denote the indicator function. The successor
state of GAP x according to the Boolean functions of context c is
denoted by f cðxÞ. The first part of (5) corresponds to the transition
probability due to gene perturbation. The probability of transi-
tioning between GAPs x and x0 based on the selected context f c is
presented as the second part of (5).

To include timing in our proposed model, given (5), we
introduce matrix Q which shows the rate of transitions among
states in S. We denote the maximum rate of change among GAPs
by l and the maximum rate of change among contexts by g. In
practice, l can be estimated from temporal data. Knowledge of the
ratio l=g, provided by experiments, would determine the value of
g. Matrix Q is the generator of a continuous-time Markov chain.
Let Q ¼ ðqðc;xÞ;ðc0 ;x0 Þ; c; c0Af1; . . . ; kg; x; x0AWÞ denote the Q -matrix of
the continuous-time Markov chain fZðtÞ; tZ0g whose state-space
is S. Elements of the Q -matrix show the rate of change among
states and can be computed in the following manner.

At any updating epoch, there are two independent processes:
(i) a process that updates the GAP in the current context, (ii) a
process that updates the context. There are null probabilities for
both processes to occur at the same time. For the first process, we
can compute the rate of change among GAPs x and x0 in context c

as the product of l, the maximum rate of change between GAPs,
times the probability to jump from GAP x to x0, i.e. Pðc;xÞ;ðc;x0 Þ. For the
second process, we can compute the rate of change between
contexts c and c0 as the product of g, the maximum rate of change
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between contexts, times the selection probability of context c0.
Furthermore, in order to have a valid Q -matrix (4), all diagonal
elements of Q should be defined such that the sum of elements in
each row is zero. Thus, the rate of change between any two states
ðc; xÞ and ðc0; x0Þ in S is defined as

qðc;xÞ;ðc0 ;x0 Þ ¼

lPðc;xÞ;ðc;x0 Þ if c¼ c0 and xax0;

gpc0 if cac0 and x¼ x0;

0 if cac0 and xax0;

�
P

X ax

P
C a c

qðc;xÞ;ðC;XÞ if c¼ c0 and x¼ x0;

8>>>>><
>>>>>:

ð6Þ

where pc0 is the selection probability of context c0.
We define pt

ij to be the probability that the continuous-time
process fZt ; tZ0g associated to the SRD-PBN makes a transition
from current state i to successor state j after t units of time. Using
this notation, pt

ij corresponds to ði; jÞ entry in matrix PðtÞ, where

PðtÞ ¼ eQt :

From the intervention perspective, we are interested in the
dynamical behavior of the SRD-PBN at discrete observation
instants, i.e. every T units of time. Such a discrete-time model
yields more information for the decision making process. Employ-
ing the memoryless property of the continuous-time Markov
chain, we obtain a discrete-time Markov chain by taking samples
from the continuous-time Markov chain at every T units of time.
This discrete-time model describes the dynamics of the SRD-PBN.
For a given sampling period T, the transition probability matrix
that expresses the dynamics of the SRD-PBN is computed as

PðTÞ ¼ eQT ; ð7Þ

where elements of Q are defined in (6). We note that the transition
probability matrix associated to the SRD-PBN is a function of the
sampling period T. Optimal intervention strategies, as described in
Section 2, can then be derived for this SRD-PBN using the
corresponding transition probability matrix.

Example. To illustrate the details of an SRD-PBN, we produce a
simple 3-gene, 2-context example. Given the logical rules of each
constituent Boolean network, one can draw the directed graphs
corresponding to each Boolean network. Fig. 4 shows the directed
graphs of the constituent Boolean networks in our simple
example. The transition probability matrix corresponding to the
context-sensitive PBN constructed based on these Boolean
networks is shown in Fig. 5(a). This figure is a heat-map where
larger transition probabilities are brighter and the smaller ones
are darker. This transition probability matrix is computed
Fig. 4. Directed graphs of Boolean networks corresponding to the toy example.

probability. (a) Context-sensitive PBN, (b) SRD-PBN for sampling period T ¼ 2, (c)

SRD-PBN for sampling period T ¼ 4.
following the methodology described in Faryabi et al. (2009).
The switching probability q is chosen to be 0.01 and there exists a
gene perturbation probability of 0.01. It is clear that most of the
states have zero self-transition probabilities. To construct the
transition probability matrix of the SRD-PBN model, we first select
l and g to be 0.1 and 0.05, respectively. The rate matrix Q is
computed based on (6). The transition probability matrix of the
SRD-PBN corresponding to this matrix Q for sampling period of
T ¼ 2 is computed based on (7) and the corresponding heat-map is
shown in Fig. 5(b). A similar procedure is repeated for T ¼ 4 and
the heat-map corresponding to the transition probability matrix
of the SRD-PBN is shown in Fig. 5(c). It is evident that the self-
transition probabilities in Fig. 5(b) and (c) are not zero. Since the
diagonal elements are brighter, these values are different for T ¼ 2
and 4. Intuitively, we expect a higher self-transition probability
for a smaller sampling period and a lower self-transition pro-
bability for a larger sampling period. It can be seen that
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self-transition probabilities are larger in Fig. 5(b) for T ¼ 2
compared to Fig. 5(c) for T ¼ 4.

4. Results and discussion

Our prime goal of modeling gene regulatory networks from
temporal gene expression data is to derive effective intervention
strategies and beneficially alter the long-run behavior of the
inferred model. From a practical point of view, at every
observation point, this strategy decides which action should be
applied to the underlying biological system. Provided that the
model framework captures the dynamics of gene regulatory
networks accurately, the derived intervention strategy would
favorably alter the behavior of aberrant cells.

In this section, through numerical studies, we provide
supporting evidence for the need to extend the original PBN
framework. In the following simulations, the target gene, the gene
responsible for aberrant behavior of the cell, is chosen to be the
most significant gene in the GAP. We assume the up-regulation of
the target gene is undesirable. Consequently, the state-space is
partitioned into desirable states, D, and undesirable states, U.
Since our objective is to down-regulate the target gene, a higher
cost is assigned to destination states having an up-regulated
target gene. Moreover, for a given status of the target gene for a
destination state, a higher cost is assigned when the control is
applied, versus when it is not. In practice, the cost values will have
to mathematically capture the benefits and costs of intervention
and the relative preference of states. These cost values will
eventually be set with the help of physicians in accordance with
their clinical judgement. Although this is not feasible within
current medical practice, we do believe that such an approach will
become feasible when engineering approaches are integrated into
translational medicine.

We postulate the following cost-per-stage in state j under
control u:

rðu; jÞ ¼

0 if u¼ 0 and jAD;
5 if u¼ 0 and jAU;
c if u¼ 1 and jAD;
5þc if u¼ 1 and jAU;

8>>>><
>>>>:

ð8Þ

where c denotes the cost of control. We study the effect of c in our
simulations. A cost minimization framework is used to effectively
trade-off the number of interventions and the likelihood of
the network being in an undesirable state. An optimal control
policy with regard to the cost values can be found via dynamic
programming.

In our simulation studies, our objective is to show that an
optimal policy derived for the current definition of context-
sensitive PBN will no longer be optimal if we include the timing
information of temporal data into the dynamics of gene regulatory
networks. To this end, we generate synthetic SRD-PBNs and
corresponding context-sensitive PBNs. We compute the cost
induced by the optimal policy derived for the context-sensitive
PBN and the cost induced by the optimal policy derived for the
SRD-PBN, when both are applied to a sequence of data generated
from the SRD-PBN. These two cost values are compared in our
simulation studies. An SRD-PBN accommodates the sampling rate,
which is in this simulation identical to the intervention rate. The
goal of this study is to measure how costly it is to apply an optimal
policy derived for a context-sensitive PBN to a sequence of data
generated based on an SRD-PBN. In the following, we consider
synthetically generated SRD-PBNs.

We generate SRD-PBNs in the following manner. Each SRD-PBN
consists of two constituent Boolean networks. Each Boolean
function of a Boolean network is randomly generated with a
random bias. Given a set of Boolean networks, we generate
various SRD-PBNs. We let g¼ 0:01. We vary the value of l from
0.05 to 4 with step-size 0.2. We choose the gene perturbation
probability of 0.01. The constituent Boolean networks are selected
with equal probabilities. Furthermore, for the given set of Boolean
networks, we generate the corresponding context sensitive PBNs
for switching probability q¼ 0:01. We let the observation period
to be every 1 unit of time, i.e. T ¼ 1. Transition probability matrix
of context-sensitive PBN is computed based on Faryabi et al.
(2009).

Using dynamic programming, given the cost-per-stage defined
in (8), we derive an optimal intervention policy m�srd for an SRD-
PBN. Our goal is to estimate the average total discounted cost
induced by m�srd for a sequence of data generated from the SRD-
PBN. To this end, we generate synthetic time-course data for 1000
time-steps from the SRD-PBN model while m�srd is applied. We
estimate the discounted cost by accumulating the discounted cost
of each state given the action at that state. This procedure is
repeated 10,000 times for random initial states and the average of
the induced discounted cost is computed. Likewise, an optimal
policy m�cs for a context-sensitive PBN is derived. Following a
similar procedure, m�cs is applied to the SRD-PBN, which
we already described, and the average discounted cost is
computed. Moreover, we compute the average discounted cost
of a sequence of time-course data for an SRD-PBN in the absence
of intervention.

In sum, for each set of Boolean networks, we have the

following: ðC srdÞ average total discounted cost induced by m�srd

on the SRD-PBN; ðC csÞ average total discounted cost induced by

m�cs on the SRD-PBN; ðC wocÞ average total discounted cost induced

in the absence of any intervention on SRD-PBN. The preceding
procedure is repeated for 1000 random Boolean networks, thereby

yielding 1000 values for each statistic: C
srd

1 ; . . . ;C
srd

1000;C
cs

1 ; . . . ;

C
cs

1000;C
woc

1 ; . . . ;C
woc

1000. Using these, we compare the effect of m�srd

and m�cs on an SRD-PBN by the empirical averages M½Csrd� of

C
srd

1 ; . . . ;C
srd

1000;M½Ccs� of C
cs

1 ; . . . ;C
cs

1000; and M½Cwoc� of

C
woc

1 ; . . . ;C
woc

1000. We define the gain obtained by each intervention

policy as the difference between the average discounted cost
before and after intervention. Gsrd, the gain of policy m�srd, is

M½Cwoc� �M½Csrd� and Gcs, the gain of policy m�cs applied to an SRD-

PBN, is M½Cwoc� �M½Ccs�. We are interested in M½Ccs� �M½Csrd�,

which we refer to as DG. DG measures how costly it is to apply an
optimal control policy derived for a context-sensitive PBN to a
sequence of data generated based on an SRD-PBN.

Figs. 6–8 demonstrate the outcome of the above experiment
for various values of cost of control c. It is evident that the
intervention gains Gsrd and Gcs are larger for smaller cost of
intervention. The structure of a context-sensitive PBN is such that
there is a transition to a new state after each unit of time, which
corresponds to one change at every unit of time on average. When
l is substantially smaller or larger than 1, DG is larger compared to
the case where l is closer to 1, as is shown in Figs. 6–8. We should
point out that the value of l for which DG attains its minimum
depends on many factors, such as g, the switching probability q in
context-sensitive PBN, and the cost of control. It is also observed
that DG increases for larger cost of control.

We emphasize that this simulation study compares the gains
obtained by two policies, the policy optimal for the SRD-PBN and
the policy optimal for the context-sensitive PBN, when each is
applied to SRD-PBN. Our objective is to show how poor the effect
of an intervention policy derived for a context-sensitive PBN
might be if the rate of change among observations is substantially
different from 1.
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Fig. 6. (a) Gsrd, gain obtained by the policy optimal for SRD-PBN, and Gcs, the gain obtained by the policy optimal for context-sensitive PBN, when both are applied to SRD-

PBN for various l. (b) Difference between the gains, DG, for various l. The cost of control is 0.1.
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Fig. 7. (a) Gsrd, gain obtained by the policy optimal for SRD-PBN, and Gcs, the gain obtained by the policy optimal for context-sensitive PBN, when both are applied to SRD-

PBN for various l. (b) Difference between the gains, DG, for various l. The cost of control is 1.0.
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Fig. 8. (a) Gsrd, gain obtained by the policy optimal for SRD-PBN, and Gcs, the gain obtained by the policy optimal for context-sensitive PBN, when both are applied to SRD-

PBN for various l. (b) Difference between the gains, DG, for various l. The cost of control is 3.
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5. Conclusion

Implementation of an intervention policy derived for PBNs
or asynchronous PBNs requires nearly continuous observation
of the underlying biological system since precise application
requires the observation of all jumps. In medical applications,
as in many engineering problems, this is not the case. The
process is sampled at discrete time intervals and a decision
to intervene or not must be made at each sample point. Our
goal in this work has been to construct a framework as an
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extension of PBNs that can capture the sampling rate of the
underlying system.

By estimating a few temporal parameters of the underlying
biological system, we construct a continuous-time process that
can embody the sojourn time of each state. Our goal is to
construct a discrete-time model by sampling the continuous-time
process. To guarantee the Markov property for the sampled
process, the continuous-time process requires the memoryless
property. To this end, we select a continuous-time Markov chain
which leads the sampled process to be a Markov chain. This
Markov chain models the dynamics of our proposed framework.
By only involving two parameters, g and l, in the timing model,
the model is not overburdened with the estimation of a large
number of timing parameters or timing distributions.
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